OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1685–1694

Membrane imaging by second-harmonic generation microscopy

L. Moreaux, O. Sandre, and J. Mertz  »View Author Affiliations


JOSA B, Vol. 17, Issue 10, pp. 1685-1694 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001685


View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed analysis of the generation of second-harmonic radiation from biological membranes labeled with a styryl dye. In particular, we consider the high-numerical-aperture limit appropriate to high-resolution microscopy in which an excitation beam is tightly focused from the side onto a membrane surface. In this limit the active surface area that contributes to second-harmonic generation (SHG) depends only on the tightness of the beam focus and the SHG radiation is confined by phase matching into two well-defined off-axis lobes. We derive expressions for the SHG radiation power, angular distribution, and polarization dependence in the cases of ideal or nonideal molecular alignment in the membrane and uniaxiality of the molecular hyperpolarizability. We define an SHG cross section similar to that used in two-photon-excited fluorescence (TPEF) to permit direct comparison of the two imaging modalities. Finally, we corroborate our results with experiments based on the excitation of a styryl dye in giant unilamellar vesicles with a mode-locked Ti:sapphire laser.

© 2000 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

Citation
L. Moreaux, O. Sandre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am. B 17, 1685-1694 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-10-1685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  2. J. R. Lakowicz and I. Gryczynski, “Multiphoton excitation of biochemical fluorophores,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1997), Vol. 5, p. 87.
  3. C. Xu and W. W. Webb, “Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1997), Vol. 5, p. 471.
  4. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 24, 530–532 (1997). [CrossRef]
  5. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. USA 93, 10, 763–10, 768 (1996). [CrossRef]
  6. J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, A. Nahata, and T. F. Heinz, “Measurement of the vector character of electric fields by optical second-harmonic generation,” Opt. Lett. 24, 1059–1061 (1999). [CrossRef]
  7. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Three-dimensional second-harmonic generation imaging with femtosecond laser pulses,” Opt. Lett. 23, 1209–1211 (1998). [CrossRef]
  8. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22, 1323–1325 (1997). [CrossRef]
  9. G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Non-linear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. USA 96, 6700–6704 (1999). [CrossRef]
  10. P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999). [CrossRef] [PubMed]
  11. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999). [CrossRef] [PubMed]
  12. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–269 (1998). [CrossRef]
  13. T. F. Heinz, H. W. K. Tom, and Y. R. Shen, “Determination of molecular orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28, 1883–1885 (1983). [CrossRef]
  14. N. Bloembergen, “Second harmonic reflected light,” Opt. Acta 13, 311–322 (1966). [CrossRef]
  15. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  16. R. Boyd, Nonlinear Optics (Academic, London, 1992).
  17. A. Lewis, A. Khatchatouriants, M. Treinin, Z. Chen, G. Peleg, N. Friedman, O. Bouetvich, Z. Rothman, L. Loew, and M. Sheres, “Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans,” Chem. Phys. 245, 133–144 (1999). [CrossRef]
  18. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two photon microscopy,” Opt. Lett. 25, 320–322 (2000). [CrossRef]
  19. A. Willets, J. E. Rice, D. Burland, and D. P. Shelton, “Problems in the comparison of theoretical and experimental hyperpolarizabilities,” J. Chem. Phys. 97, 7590–7599 (1992). [CrossRef]
  20. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross section of molecular fluorophores with data from 690 nm to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996). [CrossRef]
  21. N. Bloembergen, Nonlinear Optics, 4th ed. (World Scientific, Singapore, 1965).
  22. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1993).
  23. J. Mertz, “Molecular photodynamics involved in multi-photon excitation fluorescence microscopy,” Eur. Phys. J. D 3, 53–66 (1998). [CrossRef]
  24. S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first hyperpolarizability of conjugated organic molecules,” Science 252, 103–106 (1991). [CrossRef] [PubMed]
  25. T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J. L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998). [CrossRef]
  26. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1984).
  27. J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–457 (1977). [CrossRef]
  28. L. M. Loew and L. L. Simpson, “Charge shift probes of membrane potential. A probable electrochromic mechanism for ASP probes on a hemispherical lipid bilayer,” Biophys. J. 34, 353–365 (1981). [CrossRef] [PubMed]
  29. O. Sandre, L. Moreaux, and F. Brochard, “Dynamics of transient pores in stretched vesicles,” Proc. Natl. Acad. Sci. USA 96, 10, 588–10, 596 (1999). [CrossRef]
  30. C. W. Dirk, R. J. Twieg, and G. Wagniére, “The contribution of π electrons to second harmonic generation in organic molecules,” J. Am. Chem. Soc. 108, 5387–5395 (1986). [CrossRef]
  31. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in aplanetic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited