OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1781–1794

Multi-axial-mode laser effects in polarization spectroscopy

William C. Giancola, Thomas A. Reichardt, and Robert P. Lucht  »View Author Affiliations


JOSA B, Vol. 17, Issue 10, pp. 1781-1794 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001781


View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of multifrequency-mode laser radiation on polarization-spectroscopy signal generation are investigated by direct numerical integration of the time-dependent density-matrix equations. The numerical solution of the density-matrix equations allows us to incorporate a physically reasonable model for pulsed dye-laser radiation in our analysis of the laser–resonance interaction. The laser radiation is modeled as the sum of electric fields from a finite number of modes that are assumed to have random pulse-to-pulse phases and exponentially distributed amplitudes. Calculations are performed for a homogeneously broadened resonance (only collisional broadening) and for a resonance that is both collision and Doppler broadened. The effect of the multimode laser radiation on polarization-spectroscopy line shapes and saturation curves is investigated for different values of the laser bandwidth and mode spacing and resonance collision and Doppler widths. The saturation parameter for the resonance is strongly dependent on the ratio of the laser bandwidth to the resonance collision width when the laser bandwidth is greater than the collision width. The pulse-to-pulse fluctuations in polarization-spectroscopy signal levels are found to decrease substantially for saturating pump intensities. The inclusion of the multimode laser structure into our density-matrix equations represents a significant advance in modeling the nonlinear interaction of laser radiation with atomic or molecular resonances.

© 2000 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(020.3690) Atomic and molecular physics : Line shapes and shifts
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(300.6390) Spectroscopy : Spectroscopy, molecular

Citation
William C. Giancola, Thomas A. Reichardt, and Robert P. Lucht, "Multi-axial-mode laser effects in polarization spectroscopy," J. Opt. Soc. Am. B 17, 1781-1794 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-10-1781


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Wieman and T. W. Hänsch, “Doppler-free polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976). [CrossRef]
  2. R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, and T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE 113, 80–87 (1977). [CrossRef]
  3. W. Demtröder, Laser Spectroscopy (Springer-Verlag, New York, 1996), pp. 454–466.
  4. V. Stert and R. Fischer, “Doppler-free polarization spectroscopy using linearly polarized light,” Appl. Phys. 17, 151–154 (1978). [CrossRef]
  5. H. Gerhardt, T. Huhle, J. Neukammer, and P. J. West, “High resolution polarization spectroscopy of the 557 nm transition of Kr I,” Opt. Commun. 26, 58–61 (1978). [CrossRef]
  6. M. Raab, G. Höning, R. Castell, and W. Demtröder, “Doppler-free polarization spectroscopy of the CS2 molecule at λ=6270 Å,” Chem. Phys. Lett. 66, 307–312 (1979). [CrossRef]
  7. M. Raab, G. Höning, W. Demtröder, and C. R. Vidal, “High resolution laser spectroscopy of CS2,” J. Chem. Phys. 76, 4370–4386 (1982). [CrossRef]
  8. W. Ernst, “Doppler-free polarization spectroscopy of diatomic molecules in flame reactions,” Opt. Commun. 44, 159–164 (1983). [CrossRef]
  9. G. Zizak, J. Lanauze, and J. D. Winefordner, “Cross-beam polarization in flames with a pulsed dye laser,” Appl. Opt. 25, 3242–3246 (1986). [CrossRef] [PubMed]
  10. R. Dux, K. Grutzmacher, M. I. de la Rosa, and B. Wende, “Absolute determination of local ground-state densities of atomic hydrogen in nonlocal-thermodynamic-equilibrium environments by two-photon polarization spectroscopy,” Phys. Rev. E 51, 1416–1427 (1995). [CrossRef]
  11. K. Nyholm, R. Maier, C. G. Aminoff, and M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993). [CrossRef] [PubMed]
  12. K. Nyholm, R. Fritzon, and M. Aldén, “Single-pulse two-dimensional imaging in flames by degenerate four-wave mixing and polarization spectroscopy,” Appl. Phys. B 59, 37–43 (1994). [CrossRef]
  13. K. Nyholm, “Measurements of OH rotational temperature in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994). [CrossRef]
  14. K. Nyholm, R. Fritzon, N. Georgiev, and M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995). [CrossRef]
  15. C. F. Kaminski, B. Löfstedt, R. Fritzon, and M. Aldén, “Two-photon polarization spectroscopy and (2+3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996). [CrossRef]
  16. M. J. New, P. Ewart, A. Dreizler, and T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997). [CrossRef]
  17. T. A. Reichardt, W. C. Giancola, and R. P. Lucht, “Experimental investigation of saturated polarization spectroscopy for quantitative concentration measurements,” Appl. Opt. 39, 2002–2008 (2000). [CrossRef]
  18. T. A. Reichardt and R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998). [CrossRef]
  19. R. L. Farrow and D. J. Rakestraw, “Detection of trace molecular species using degenerate four-wave mixing,” Science 257, 1894–1900 (1992). [CrossRef] [PubMed]
  20. R. L. Vander Wal, R. L. Farrow, and D. J. Rakestraw, “High-resolution investigation of degenerate four-wave mixing in the γ(0, 0) band of nitric oxide,” in Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pennsylvania, 1993), pp. 1653–1659.
  21. R. P. Lucht, R. L. Farrow, and D. J. Rakestraw, “Saturation effects in gas-phase degenerate four-wave mixing spectroscopy: nonperturbative calculations,” J. Opt. Soc. Am. B 10, 1508–1520 (1993). [CrossRef]
  22. E. J. Friedman-Hill, L. A. Rahn, and R. L. Farrow, “On the interpretation and rotational assignment of degenerate four-wave mixing spectra: four-photon line strengths for crossover resonances in NO A2Σ+–X2Π,” J. Chem. Phys. 100, 4065–4076 (1994). [CrossRef]
  23. P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1988).
  24. R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992).
  25. R. P. Lucht, R. Trebino, and L. A. Rahn, “Resonant multiwave mixing spectra of gas-phase sodium: nonperturbative calculations,” Phys. Rev. A 45, 8209–8227 (1992). [CrossRef] [PubMed]
  26. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University, New York, 1951).
  27. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990), Vols. 1 and 2.
  28. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Mass., 1977).
  29. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).
  30. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  31. V. R. Mironenko and V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980). [CrossRef]
  32. V. Baev, G. Gaida, H. Schröder, and P. E. Toschek, “Quantum fluctuations of a multimode laser oscillator,” Opt. Commun. 38, 309–313 (1981). [CrossRef]
  33. D. A. Greenhalgh and S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907–913 (1985). [CrossRef] [PubMed]
  34. L. A. Westling, M. G. Raymer, and J. J. Snyder, “Single-shot spectral measurements and mode correlations in a multimode pulsed dye laser,” J. Opt. Soc. Am. B 1, 150–154 (1984). [CrossRef]
  35. S. Kroll, M. Alden, T. Berglind, and R. J. Hall, “Noise characteristics of single shot broadband Raman-resonant CARS with single- and multimode lasers,” Appl. Opt. 26, 1068–1073 (1987). [CrossRef] [PubMed]
  36. T. T. Kajava, H. M. Lauranto, and R. R. E. Salomaa, “Mode structure fluctuations in a pulsed dye laser,” Appl. Opt. 31, 6987–6992 (1992). [CrossRef] [PubMed]
  37. T. A. Reichardt, W. C. Giancola, C. M. Shappert, and R. P. Lucht, “Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements,” Appl. Opt. 38, 6951–6961 (1999). [CrossRef]
  38. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a near-adiabatic, surface-mixing (Hencken) burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  39. S. Gordon and B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” NASA Rep. SP-273 (NASA Glenn Research Center, Cleveland, Ohio, 1976).
  40. N. K. Dutta, “Effect of pump fluctuations on second harmonic generation and parametric amplifications,” Opt. Quantum Electron. 11, 217–222 (1979). [CrossRef]
  41. N. K. Dutta, “Two-photon resonant four-wave mixing with nonmonochromatic waves,” J. Phys. B 13, 411–426 (1980). [CrossRef]
  42. G. Alber, J. Cooper, and P. Ewart, “Theory of resonant degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 31, 2344–2352 (1985). [CrossRef] [PubMed]
  43. J. Cooper, A. Charlton, D. R. Meacher, P. Ewart, and G. Alber, “Revised theory of resonant degenerate four-wave mixing with broad-bandwidth lasers,” Phys. Rev. A 40, 5705–5715 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited