OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1795–1802

Spectral resolution and sampling issues in Fourier-transform spectral interferometry

Christophe Dorrer, Nadia Belabas, Jean-Pierre Likforman, and Manuel Joffre  »View Author Affiliations


JOSA B, Vol. 17, Issue 10, pp. 1795-1802 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001795


View Full Text Article

Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate experimental limitations in the accuracy of Fourier-transform spectral interferometry, a widely used technique for determining the spectral phase difference between two light beams consisting of, for example, femtosecond light pulses. We demonstrate that the spectrometer’s finite spectral resolution, pixel aliasing, and frequency-interpolation error can play an important role, and we provide a new and more accurate recipe for recovering the spectral phase from the experimental data.

© 2000 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7120) Ultrafast optics : Ultrafast phenomena

Citation
Christophe Dorrer, Nadia Belabas, Jean-Pierre Likforman, and Manuel Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-10-1795


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Froehly, A. Lacourt, and J. C. Vienot, “Notions de réponse impulsionnelle et de fonction de transfert temporelles des pupilles optiques, justifications expérimentales et applications,” J. Opt. (Paris) 4, 183–196 (1973).
  2. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, and J. A. Arnaud, “Nouvelle méthode de mesure de la réponse impulsionnelle des fibres optiques,” Appl. Opt. 19, 3749–3755 (1980).
  3. F. Reynaud, F. Salin, and A. Barthelemy, “Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses,” Opt. Lett. 14, 275–277 (1989).
  4. E. Tokunaga, A. Terasaki, and T. Kobayashi, “Induced phase modulation of chirped continuum pulses studied with a femtosecond frequency-domain interferometer,” Opt. Lett. 18, 370–372 (1993).
  5. J.-P. Geindre, P. Audebert, A. Rousse, F. Falliès, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamoniaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
  6. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
  7. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbugel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996); “Erratum,” 21, 1313 (1996).
  8. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81–83 (1997).
  9. S. M. Gallagher, A. W. Albrecht, J. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, “Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals,” J. Opt. Soc. Am. B 15, 2338–2345 (1998).
  10. C. Dorrer and F. Salin, “Characterization of spectral phase modulation using classical and polarization spectral interferometry,” J. Opt. Soc. Am. B 15, 2331–2337 (1998).
  11. C. Dorrer, “Influence of the calibration of the detector on spectral interferometry,” J. Opt. Soc. Am. B 16, 1160–1168 (1999).
  12. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993); R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
  13. J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. 18, 1946–1948 (1993); J. Paye, “How to measure the amplitude and phase of an ultrashort light pulse with an autocorrelator and a spectrometer,” IEEE J. Quantum Electron. 30, 2693–2697 (1994).
  14. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
  15. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
  16. L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21, 564–566 (1996).
  17. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
  18. J.-P. Likforman, M. Joffre, and V. Thierry-Mieg, “Measurement of photon echoes by use of Fourier-transform spectral interferometry,” Opt. Lett. 22, 1104–1106 (1997).
  19. M. F. Emde, W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Spectral interferometry as an alternative to time-domain heterodyning,” Opt. Lett. 22, 1338–1340 (1997).
  20. X. Chen, W. J. Walecki, O. Buccafusca, D. N. Fittinghoff, and A. L. Smirl, “Temporally and spectrally resolved amplitude and phase of coherent four-wave-mixing emission from GaAs quantum wells,” Phys. Rev. B 56, 9738–9743 (1997).
  21. A. L. Smirl, X. Chen, and O. Buccafusca, “Ultrafast time-resolved quantum beats in the polarization state of coherent emission from quantum wells,” Opt. Lett. 23, 1120–1122 (1998).
  22. V. N. Kumar and D. N. Rao, “Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials,” J. Opt. Soc. Am. B 12, 1559–1563 (1995).
  23. J. Tignon, M. V. Marquezini, T. Hasche, and D. S. Chemla, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999).
  24. D. Birkedal and J. Shah, “Femtosecond spectral interferometry of resonant secondary emission from quantum wells: resonance Rayleigh scattering in the nonergodic regime,” Phys. Rev. Lett. 81, 2372–2375 (1998).
  25. S. Haacke, S. Schaer, B. Deveaud, and V. Savona, “Interferometric analysis of resonant Rayleigh scattering from two-dimensional excitons,” Phys. Rev. B 61, R5109–R5112 (2000).
  26. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999).
  27. C. Dorrer, “Implementation of spectral phase interferometry for direct electric-field reconstruction using a simultaneously recorded reference interferogram,” Opt. Lett. 24, 1532–1534 (1999).
  28. C. Dorrer, B. de Beauvoir, C. Le Blanc, S. Ranc, J.-P. Rousseau, P. Rousseau, J. P. Chambaret, and F. Salin, “Single-shot real-time characterization of chirped-pulse amplification systems using spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 24, 1644–1646 (1999).
  29. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
  30. In cases such as four-wave mixing in which causality plays a role, the emitted field is asymmetric in time, so that it is usually better to use positive values of τ.
  31. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986).
  32. Note that a similar explanation can be attributed to the strong dependence of the retrieved phase on the exact calibration.11 Even a small α2 in the calibration law will result in a chirp proportional to time delay.
  33. V. Coates and H. Hausdorff, “Interferometric methods of measuring the spectral slit width of spectrometers,” J. Opt. Soc. Am. 45, 425–430 (1955).
  34. V. Kumar and D. Rao, “Interferometric measurement of the modulation transfer function of a spectrometer by using spectral modulations,” Appl. Opt. 38, 660–665 (1999).
  35. For the sake of clarity, we assume that the interferometer is balanced, so that E(t)=E0(t).
  36. A. W. Albrecht, J. D. Hybl, S. M. Gallagher, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited