OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 1841–1849

Vectorial mechanism of instabilities in vertical-cavity surface-emitting lasers

Yu. V. Loiko, A. M. Kul’minskii, and A. P. Voitovich  »View Author Affiliations

JOSA B, Vol. 17, Issue 11, pp. 1841-1849 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the influence of vectorial degrees of freedom on stationary and dynamic behavior of the amplitude-polarization parameters of vertical-cavity surface-emitting lasers. It is demonstrated that these lasers can exhibit complex dynamics, including fully developed amplitude-polarization chaos, even when a single polarization pattern is excited. The appearance of chaotic dynamics is attributed to the vectorial mechanism of destabilization, which can act on the dynamics independently of the conventional scalar mechanism. This property provides background for new measurement methods.

© 2000 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(260.5430) Physical optics : Polarization

Yu. V. Loiko, A. M. Kul'minskii, and A. P. Voitovich, "Vectorial mechanism of instabilities in vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 17, 1841-1849 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. B. Abraham and G. M. Stephan, eds., Special issue on polarization effects in lasers and spectroscopy, J. Quant. Semiclass. Opt. Part B 10, 1–308 (1998). [CrossRef]
  2. N. B. Abraham, M. D. Matlin, and R. S. Gioggia, “Polarization stability and dynamics in a model for a Zeeman laser that goes beyond third-order Lamb theory,” Phys. Rev. A 53, 3514–3528 (1996); M. D. Matlin, R. S. Gioggia, N. B. Abraham, P. Glorieux, and T. Crawford, “Polarization switch in a Zeeman laser in the presence of dynamical instabilities,” Opt. Commun. 120, 204–222 (1995); N. B. Abraham, E. Arimondo, and M. San Miguel, “Polarization state selection and stability in a laser with a polarization isotropic resonator: an example of no lasing despite inversion above threshold,” Opt. Commun. OPCOB8 117, 344–356 (1995). [CrossRef] [PubMed]
  3. C. J. Chang-Hasnain, J. P. Harbison, L. T. Florez, and N. G. Stoffel, “Polarization characteristics of quantum-well vertical-cavity surface-emitting lasers,” Electron. Lett. 27, 163–165 (1991); K. D. Choquette, K. L. Lear, R. E. Leibenguth, and M. T. Asom, “Polarization modulation of cruciform vertical-cavity laser diodes,” Appl. Phys. Lett. 64, 2767–2769 (1994). [CrossRef]
  4. C. O. Weiss and R. Vilaseca, Dynamics of Lasers (VCH, Deerfield Beach, Fla., 1991).
  5. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728–1739 (1995). [CrossRef] [PubMed]
  6. X. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33, 765–783 (1997). [CrossRef]
  7. M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, “Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers,” Phys. Rev. A 57, 2080–2090 (1998). [CrossRef]
  8. A. M. Kul’minskii, A. P. Voitovich, and V. N. Severikov, “Decay rate of the electromagnetic field polarization in a vector laser,” J. Quant. Semiclass. Opt. Part B 10, 107–114 (1998). [CrossRef]
  9. A. Kul’minskii, Yu. Loiko, and A. Voitovich, “The effect of the vectorial degree of freedom on the dynamics of class-A lasers,” Opt. Commun. 167, 235–259 (1999). [CrossRef]
  10. A. M. Kul’minskii, A. P. Voitovich, and V. N. Severikov, “Polarization chaos in a vector nonautonomous class-A laser,” J. Opt. B. 1, 294–298 (1999). [CrossRef]
  11. R. C. Jones, “New calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–492 (1941); “New calculus for the treatment of optical systems. VII. Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671–685 (1948); “New calculus for the treatment of optical systems. VIII. Electromagnetic theory,” J. Opt. Soc. Am. A JOAOD6 46, 126–131 (1956). [CrossRef]
  12. A. P. Voitovich and V. N. Severikov, Lasers with Anisotropic Resonator (Nauka i Tehnika, Minsk, Belarus, 1988, in Russian).
  13. P. Paddon, E. Sjerve, A. D. May, M. Bourouis, and G. Stephan, “Polarization modes in a quasi-isotropic laser: a general anisotropy model with applications,” J. Opt. Soc. Am. B 9, 574–589 (1992). [CrossRef]
  14. H. J. Raterink, H. V. Stadt, C. H. Velzel, and G. Dikstra, “Development of a ring laser for polarimetric measurements,” Appl. Opt. 6, 813–820 (1967). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited