OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 1856–1866

Two-photon-resonant difference-frequency mixing with an ArF excimer laser: vacuum-ultraviolet generation and multiphoton spectroscopy

Gregory W. Faris, Scott A. Meyer, Mark J. Dyer, and Michael J. Banks  »View Author Affiliations


JOSA B, Vol. 17, Issue 11, pp. 1856-1866 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001856


View Full Text Article

Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon-resonant difference-frequency generation using an ArF excimer laser provides widely tunable vacuum-ultraviolet (VUV) radiation at high pulse energies. Two-photon resonances in H2, Kr, and Hd are within the tuning range of the ArF laser. With this technique we have directly measured >65 μJ at 133 nm. H2 has a significantly smaller phase mismatch than Kr, leading to more efficient VUV generation, particularly at shorter VUV wavelengths. However, mixing in H2 also produces additional VUV lines from two-photon excited amplified spontaneous emission. We have observed new amplified spontaneous-emission lines produced in this manner. H2 is ineffective at generation of Lyman-α radiation owing to the production of H atoms. With a phase-matched mixture of Kr and Ar, we have directly measured 7 μJ at Lyman-α. A physical basis for the asymmetric tuning profile in this gas mixture is presented. With light from this VUV source we have performed 1+1 resonantly enhanced multiphoton ionization in Xe at 147 nm and two-photon-excited fluorescence in Ne at 133 nm.

© 2000 Optical Society of America

OCIS Codes
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6410) Spectroscopy : Spectroscopy, multiphoton

Citation
Gregory W. Faris, Scott A. Meyer, Mark J. Dyer, and Michael J. Banks, "Two-photon-resonant difference-frequency mixing with an ArF excimer laser: vacuum-ultraviolet generation and multiphoton spectroscopy," J. Opt. Soc. Am. B 17, 1856-1866 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-11-1856


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. 19, 1759–1770 (1983).
  2. G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
  3. G. W. Faris and M. J. Dyer, “Raman-shifting ArF excimer laser radiation for vacuum-ultraviolet multiphoton spectroscopy,” J. Opt. Soc. Am. B 10, 2273–2286 (1993).
  4. G. W. Faris and M. J. Dyer, “Two-photon excitation of neon at 133 nm,” Opt. Lett. 18, 382–384 (1993).
  5. R. W. Dreyfus, P. Bogen, and H. Langer, “Atomic H and D concentrations and velocities measured with harmonically generated Lyman-α (1215 Å) radiation,” in Laser Techniques for Extreme Ultraviolet Spectroscopy, T. J. McIlrath and R. R. Freeman, eds. (American Institute of Physics, New York, 1982), pp. 57–68.
  6. K. G. H. Baldwin, J. P. Marangos, and D. D. Burgess, “Application of coherent VUV radiation to the measurement of Lyman-α absorption lineshapes in a dense Z-pinch plasma,” J. Phys. D 17, L169–L173 (1984).
  7. G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
  8. H. F. Dobele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
  9. D. Wagner, B. Dikmen, and H. F. Döbele, “Vacuum ultraviolet absorption spectroscopy in the spectral interval of Lyman-α of atomic hydrogen and deuterium in an ion source plasma,” Rev. Sci. Instrum. 67, 1800–1806 (1996).
  10. Ph. Mertens and M. Silz, “Radial profiles of atomic deuterium measured in the boundary of TEXTOR 94 with laser-induced fluorescence,” J. Nucl. Mater. 241–243, 842–847 (1997).
  11. S. A. Meyer, D. Bershader, and S. P. Sharma, “Resonance broadening measurements of atomic oxygen at 130 nm,” J. Quant. Spectrosc. Radiat. Transfer 60, 53–68 (1998).
  12. A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
  13. R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
  14. P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
  15. J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
  16. R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, “Tunable coherent vacuum-ultraviolet generation in atomic vapors,” Phys. Rev. Lett. 32, 343–346 (1974).
  17. W. Jamroz and B. P. Stoicheff, “Generation of tunable coherent vacuum-ultraviolet radiation,” in Progress in Optics XX, E. Wolf, ed. (North-Holland, Amsterdam, 1983), pp. 325–381.
  18. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).
  19. R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).
  20. C. R. Vidal, “Four-wave frequency mixing in gases,” in Tunable Lasers, L. F. Mollenauer and J. C. White, eds., Topics in Applied Physics (Springer-Verlag, Berlin, 1987), Vol. 59, pp. 57–113.
  21. H. F. Döbele, M. Hörl, and M. Röwenkamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
  22. P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
  23. A. Goehlich, U. Czarnetzki, and H. F. Dobele, “Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding,” Appl. Opt. 37, 8453–8459 (1998).
  24. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994).
  25. V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
  26. V. I. Gladushchak, S. A. Moshkalev, G. T. Razdobarin, and E. Ya. Shreider, “Coherent sources of vacuum ultraviolet radiation,” Sov. Phys. Tech. Phys. 31, 855–873 (1986).
  27. S. M. Hooker and C. E. Webb, “Progress in vacuum-ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
  28. K. D. Bonin and T. J. McIlrath, “Generation of tunable coherent radiation below 1000 Å by four-wave mixing in krypton,” J. Opt. Soc. Am. B 2, 527–534 (1985).
  29. G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753–1764 (1987).
  30. K. Miyazaki, H. Sakai, and T. Sato, “Two-photon resonances in Xe and Kr for the generation of tunable coherent extreme UV radiation,” Appl. Opt. 28, 699–702 (1989).
  31. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7, 1254–1259 (1990).
  32. C. H. Muller III, D. D. Lowenthal, M. A. DeFaccio, and A. V. Smith, “High-efficiency, energy-scalable, coherent 130-nm source by four-wave mixing in Hg vapor,” Opt. Lett. 13, 651–653 (1988).
  33. Y.-M. Yiu, K. D. Bonin, and T. J. McIlrath, “Two-photon resonant upconversion in xenon,” Opt. Lett. 7, 268–270 (1982).
  34. R. Hilbig and R. Wallenstein, “Tunable VUV radiation generated by two-photon resonant frequency mixing in xenon,” IEEE J. Quantum Electron. 19, 194–201 (1983).
  35. K. Tsukiyama, M. Momose, M. Tsukakoshi, and T. Kasuya, “Generation of XUV radiation by four-wave mixing in CO,” Opt. Commun. 79, 88–92 (1990).
  36. N. Melikechi, S. Gangopadhyay, and E. E. Eyler, “Generation of vacuum ultraviolet radiation for precision laser spectroscopy,” Appl. Opt. 36, 7776–7778 (1997).
  37. G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997).
  38. W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. 15, 380–392 (1979).
  39. R. Hilbig, G. Hilber, A. Timmerman, and R. Wallenstein, “Broadly tunable VUV radiation generated by frequency mixing in gases,” in Laser Techniques in the Extreme Ultraviolet, S. E. Harris and T. B. Lucatorto, eds. (American Institute of Physics, New York, 1984), pp. 1–9.
  40. C. E. M. Strauss and D. J. Funk, “Broadly tunable difference-frequency generation of VUV using two-photon resonances in H2 and Kr,” Opt. Lett. 16, 1192–1194 (1991).
  41. G. W. Faris and M. J. Dyer, “Multiphoton spectroscopy using tunable VUV radiation from a Raman-shifted excimer laser,” in Short-Wavelength Coherent Radiation: Generation and Applications, P. H. Bucksbaum and N. M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 58–61.
  42. O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, and I. V. Hertel, “Generation of broadly tunable femtosecond vacuum-ultraviolet pulses,” Opt. Lett. 21, 1159–1161 (1996).
  43. Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Coherent extreme-ultraviolet generation at 64 nm by efficient frequency tripling of an ArF laser,” J. Opt. Soc. Am. B 14, 1029–1034 (1997).
  44. T. Srinivasan, H. Egger, H. Pummer, and C. K. Rhodes, “Generation of extreme ultraviolet radiation at 79 nm by sum frequency mixing,” IEEE J. Quantum Electron. 19, 1270–1276 (1983).
  45. Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735–737 (1993).
  46. H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
  47. T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. 15, 337–342 (1979).
  48. R. S. Hargrove and J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped stimulated Raman scattering in H2,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1979), paper ThA6.
  49. M. Shahidi, T. S. Luk, and C. K. Rhodes, “Generation of infrared and extreme-ultraviolet radiation in krypton with picosecond irradiation at 193 nm,” J. Opt. Soc. Am. B 5, 2386–2394 (1988).
  50. U. Czarnetzki, U. Wojak, and H. F. Döbele, “Observation of stimulated hyper-Raman scattering in H2,” Phys. Rev. A 40, 6120–6123 (1989).
  51. U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2 by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
  52. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
  53. G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38, 6231–6239 (1988).
  54. A. Lago, G. Hilber, and R. Wallenstein, “Optical-frequency conversion in gaseous media,” Phys. Rev. A 36, 3827–3836 (1987).
  55. To achieve agreement with Refs. 52 and 54, and the figures of Ref. 53, we use only positive k values in Eq. (3) of Ref. 53. We do not use a negative sign for the parametrized distance, ε, for the difference (dye) wavelength.
  56. J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
  57. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 682–685.
  58. P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21–37 (1974).
  59. G. I. Chashchina, V. I. Gladushchak, and E. Ya. Shreider, “Determination of the refractive index of argon and the oscillator strength of its resonance lines,” Opt. Spectrosc. 24, 542–543 (1968).
  60. P. D. Chopra and D. W. O. Heddle, “Polarization free measurements of Rayleigh scattering of Lyman α,” J. Phys. B 7, 2421–2428 (1974).
  61. W. R. Ferrell, M. G. Payne, and W. R. Garrett, “Determination of optical constants of noble gases through multiphoton ionization measurements,” Phys. Rev. A 35, 5020–5031 (1987).
  62. R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
  63. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton, and xenon in the 253.7–140.4-nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
  64. G. I. Chashchina and E. Ya. Shreider, “Determination of hydrogen refraction in the vacuum spectral range,” Opt. Spectrosc. 66, 274–275 (1989).
  65. M. O. Bulanin and I. M. Kislyakov, “Dynamic polarizabilities of rare-gas atoms: krypton and xenon,” Opt. Spectrosc. 85, 819–825 (1998).
  66. R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
  67. R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33, 305–307 (1978).
  68. V. P. Gladushchak, S. A. Moshkalev, G. I. Chashchina, and E. Ya. Shreider, “Use of third-harmonic generation for determining the refractive indices of gases in the vacuum ultraviolet spectral region,” Opt. Spectrosc. 51, 608–609 (1981).
  69. H. Puell, H. Scheingraber, and C. R. Vidal, “Saturation of resonant third-harmonic generation in phase-matched systems,” Phys. Rev. A 22, 1165–1178 (1980).
  70. H. Scheingraber and C. R. Vidal, “Saturation of resonant third-harmonic generation due to self-defocusing and a redistribution of the population densities,” IEEE J. Quantum Electron. 19, 1747–1758 (1983).
  71. J. C. Miller, “Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon,” Phys. Rev. A 40, 6969–6976 (1989).
  72. P. G. Datskos, L. A. Pinnaduwage, and J. F. Kielkopf, “Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2,” Phys. Rev. A 55, 4131–4142 (1997).
  73. S. A. Meyer and G. W. Faris, “High-power Lyman-α source generated with an ArF excimer laser,” Opt. Lett. 23, 204–206 (1998).
  74. M. Krumrey, E. Tegeler, J. Barth, M. Krisch, F. Schäfers, and R. Wolf, “Schottky type photodiodes as detectors in the VUV and soft x-ray range,” Appl. Opt. 27, 4336–4341 (1988).
  75. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Pied, Lincoln, Nebr., 1967), pp. 263–295.
  76. U. Czarnetzki, H. F. Döbele, and B. Rückle, “Stimulated IR- and vacuum-UV emission following two-photon-excitation of molecular hydrogen using an ArF laser,” Appl. Phys. B: Photophys. Laser Chem. 48, 37–40 (1989).
  77. T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
  78. I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
  79. R. J. Spindler, Jr., “Franck–Condon factors for band systems of molecular hydrogen—I,” J. Quant. Spectrosc. Radiat. Transfer 9, 597–626 (1969).
  80. S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).
  81. D. Cotter, “Tunable, narrow-band coherent VUV source for the Lyman-alpha region,” Opt. Commun. 31, 397–400 (1979).
  82. R. Wallenstein, “Generation of narrowband tunable VUV radiation at the Lyman-α wavelength,” Opt. Commun. 33, 119–122 (1980).
  83. H. Langer, H. Puell, and H. Röhr, “Lyman alpha (1216 Å) generation in krypton,” Opt. Commun. 34, 137–142 (1980).
  84. R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5, 279–281 (1980).
  85. H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, “Resonant two photon ionization of H and D atoms,” Opt. Commun. 37, 15–19 (1981).
  86. R. Hilbig and R. Wallenstein, “Enhanced production of tunable vuv radiation by phase-matched frequency tripling in krypton and xenon,” IEEE J. Quantum Electron. 17, 1566–1573 (1981).
  87. S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
  88. L. Cabaret, C. Delsart, and C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a vuv single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
  89. Ph. Mertens and P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
  90. K. Hakuta, L. Marmet, and B. P. Stoicheff, “Nonlinear optical generation with reduced absorption using electric-field coupling in atomic hydrogen,” Phys. Rev. A 45, 5152–5159 (1992).
  91. T. J. McKee, B. P. Stoicheff, and S. C. Wallace, “Tunable, coherent radiation in the Lyman-α region (1210–1290 Å) using magnesium vapor,” Opt. Lett. 3, 207–208 (1978).
  92. R. S. Turley, R. A. McFarlane, J. Remillard, and D. G. Steel, “Production of intense, coherent, tunable, narrow-band Lyman-alpha radiation,” Proc. SPIE 912, 116–121 (1988).
  93. K. Eikema, J. Walz, and T. Hansch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett. 83, 3828–3831 (1999).
  94. F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
  95. C. E. M. Strauss, Los Alamos National Laboratory, Los Alamos, New Mexico (personal communication, 1997).
  96. W. L. Wiese and G. A. Martin, “Atomic transition probabilities,” in CRC Handbook of Chemistry and Physics, 59th ed., R. C. Weast, ed. (CRC, West Palm Beach, Fl., 1978), pp. D112–D140.
  97. G. Herzberg and C. Jungen, “Rydberg series and ionization potential of the H2 molecule,” J. Mol. Spectrosc. 41, 425–486 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited