OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 1867–1873

Improved fitting equation for frequency-resolved femtosecond hyper-Rayleigh scattering experiments

Geert Olbrechts, Koen Clays, and André Persoons  »View Author Affiliations

JOSA B, Vol. 17, Issue 11, pp. 1867-1873 (2000)

View Full Text Article

Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One approach to the experimental determination of the molecular second-order nonlinear polarizability, or the first hyperpolarizability, of fluorescent species by hyper-Rayleigh scattering is based on high-frequency demodulation of the time-delayed fluorescence contribution to the immediate scattering signal [Rev. Sci. Instrum. <b>69</b>, 2233 (1998)]. For typical fluorescence lifetimes of less than a nanosecond a detection bandwidth of more than 1 GHz is necessary. This bandwidth has not yet been realized. Measurements at successively higher modulation frequencies are performed instead. A fitting of the apparent hyperpolarizability as a function of the modulation frequency then reveals the inherent hyperpolarizability without the fluorescence contribution. An improved fitting function has been derived, resulting in the elimination of a small systematic error and in the reduction of the larger statistical uncertainty in the deduced value. Possible implications of the improved accuracy and precision are discussed.

© 2000 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4890) Materials : Organic materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes
(190.4400) Nonlinear optics : Nonlinear optics, materials

Geert Olbrechts, Koen Clays, and André Persoons, "Improved fitting equation for frequency-resolved femtosecond hyper-Rayleigh scattering experiments," J. Opt. Soc. Am. B 17, 1867-1873 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
  2. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
  3. K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Part 3, Vol. 85 of Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1994), pp. 455–498.
  4. T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
  5. K. Clays, E. Hendrickx, T. Verbiest, and A. Persoons, “Nonlinear optical properties of correlated chromophores in organic mesoscopic superstructures,” Adv. Mater. 10, 643–655 (1998).
  6. E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
  7. C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
  8. M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
  9. E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, “Experimental and theoretical investigation of the second-order optical properties of the chromophore retinal and its derivatives: modeling the bacteriorhodopsin binding pocket,” in American Chemical Society Symposium Series: Polymers for Second-Order Nonlinear Optics (American Chemical Society, Washington, D.C., 1995), Vol. 601, pp. 82–94.
  10. C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
  11. S. F. Hubbard, R. G. Petschek, and K. D. Singer, “Spectral content and dispersion of hyper-Rayleigh scattering,” Opt. Lett. 21, 1774–1776 (1996).
  12. P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh scattering measurements of nonlinear optical chromophores,” J. Chem. Phys. 105, 3918–3929 (1996).
  13. I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
  14. O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
  15. A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
  16. S. Stadler, G. Bourhill, and C. Braüchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic molecules,” J. Phys. Chem. 100, 6927–6934 (1996).
  17. M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm,” Chem. Phys. Lett. 280, 544–550 (1997).
  18. O. K. Song, J. N. Woodford, and C. H. Wang, “Effects of two-photon fluorescence and polymerization on the first hyperpolarizability of an azobenzene dye,” J. Phys. Chem. A 101, 3222–3226 (1997).
  19. T. W. Chui and K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet,” J. Chem. Phys. 109, 1391–1396 (1998).
  20. B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
  21. P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
  22. K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
  23. G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
  24. G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
  25. G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
  26. K. Clays, K. Wostyn, G. Olbrechts, A. Persoons, A. Watanabe, K. Nogi, X.-M. Duan, S. Okada, H. Oikawa, H. Nakanishi, D. Beljonne, H. Vogel, and J.-L. Brédas, “Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes,” J. Opt. Soc. Am. B 17, 256–265 (2000).
  27. K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E: Sci. Instrum. 22, 297–305 (1989).
  28. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
  29. M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, “Hyper-Rayleigh scattering studies of first order hyperpolarizability of tricyanovinylthiophene derivatives in solution,” J. Chem. Phys. 102, 6400–6405 (1995).
  30. O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
  31. M. Wu, K. Clays, and A. Persoons, “High-resolution electric-field-induced second-harmonic generation with ultra-fast Ti:sapphire laser,” Rev. Sci. Instrum. 67, 3005–3009 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited