OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 1874–1883

Double-resonant processes in χ(2) nonlinear periodic media

Vladimir V. Konotop and Vladimir Kuzmiak  »View Author Affiliations


JOSA B, Vol. 17, Issue 11, pp. 1874-1883 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001874


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a one-dimensional periodic nonlinear χ(2) medium, by choice of a proper material and geometrical parameters of the structure, it is possible to obtain two matching conditions for simultaneous generation of second and third harmonics. This leads to new diversity of the processes of the resonant three-wave interactions, which are discussed within the framework of the slowly varying envelope approach. In particular we concentrate on the fractional conversion of the frequency ω(2/3)ω. This phenomenon occurs by means of intermediate energy transfer to the first harmonic at the frequency ω/3 and can be controlled by this mode. By analogy the same medium allows nondirect second-harmonic generation, controlled by the cubic harmonic. Propagation of localized pulses in the form of two coupled bright solitons on first and third harmonics and a dark soliton on the second harmonic is possible.

© 2000 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4320) Optical devices : Nonlinear optical devices

Citation
Vladimir V. Konotop and Vladimir Kuzmiak, "Double-resonant processes in χ(2) nonlinear periodic media," J. Opt. Soc. Am. B 17, 1874-1883 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-11-1874


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For review, see C. M. Soukoulis, ed., Photonic Band Gaps and Localization (Plenum, New York, 1993); J. Opt. Soc. Am. B 10, 280–413 (1993); Development and applications of materials exhibiting photonic band gaps feature, E. Burstein and C. Weisbuch, eds., Confined Electrons and Photons, NATO ASI Ser., Ser. B 340 (1995); C. M. Soukoulis, ed., Photonic Band Gap Materials, NATO ASI Ser., Ser. E 315 (1996); and in J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications, NATO ASI Ser., Ser. E 324 (1996).
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University, Princeton, N.J., 1995).
  3. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–382 (1979); L. Kahn, N. S. Almeida, and D. L. Mills, “Nonlinear optical response of superlattices. Multistability and soliton trains,” Phys. Rev. B 37, 8072–8081 (1988); V. M. Agranovich, S. A. Kiselev, and D. L. Mills, “Optical multistability in nonlinear superlattices with very thin layers,” Phys. Rev. B PRBMDO 44, 10917–10920 (1991). [CrossRef]
  4. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  5. H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985); W. Chen and D. L. Mills, “Gap solitons in nonlinear periodic structures,” Phys. Rev. Lett. 58, 160–163 (1987); D. L. Mills and S. E. Trullinger, “Gap solitons in nonlinear periodic structures,” Phys. Rev. B PRBMDO 36, 947–952 (1987). [CrossRef] [PubMed]
  6. C. M. de Sterke and J. E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic structures,” Phys. Rev. A 38, 5149–5165 (1988). [CrossRef] [PubMed]
  7. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrafast pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994); A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors,” Phys. Rev. Lett. 74, 5020–5023 (1995); M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys. JAPIAU 76, 2023–2026 (1994); M. Scalora, R. L. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, J. Bendikson, H. Ledbetter, C. M. Bowden, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E PLEEE8 76, R1078–R1081 (1996). [CrossRef] [PubMed]
  8. A. V. Buryak, I. Towers, and S. Trillo, “Multistability, homoclinic clamping, and chaos in nonlinear quadratic distributed feedback systems,” Phys. Rev. A 267, 319–325 (2000).
  9. E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic interference of three-wave and double two-wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972); C. Flytzanis and N. Bloembergen, “Infrared dispersion of third-order susceptibilities in dielectrics: retardation effects,” Prog. Quantum Electron. 7, 271–300 (1974). [CrossRef]
  10. N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–485 (1970). [CrossRef]
  11. J. P. van der Ziel and M. Ilegems, “Optical second harmonic generation in periodic multilayer GaAs–Al0.3Ga0.7As structures,” Appl. Phys. Lett. 28, 437–439 (1976). [CrossRef]
  12. J. Martorell and R. Corbalan, “Enhancement of second har-monic generation in a periodic structure with a defect,” Opt. Commun. 108, 319–323 (1994); J. Trull, R. Vilaseca, J. Martorell, and R. Corbalan, “Second harmonic generation in local modes of a truncated periodic structure,” Opt. Lett. 20, 1746–1748 (1995). [CrossRef]
  13. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quazi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  14. M. J. Steel and C. M. de Sterke, “Second-harmonic generation in second-harmonic fiber Bragg gratings,” Appl. Opt. 35, 3211–3222 (1996); “Bragg-assisted parametric amplification of short optical pulses,” Opt. Lett. 21, 420–422 (1996); M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulse second-harmonic generation in nonlinear one-dimensional, periodic structures,” Phys. Rev. A PLRAAN 56, 3166–3174 (1997). [CrossRef] [PubMed]
  15. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994); M. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge ofsemiconductor heterostructures,” Phys. Rev. A 53, 2799–1783 (1996). [CrossRef] [PubMed]
  16. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–686 (1946).
  17. V. V. Konotop and V. Kuzmiak, “Simultaneous second- and third-harmonic generation in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 16, 1370–1376 (1999). [CrossRef]
  18. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991). [CrossRef]
  19. E. D. Palick, ed., Handbook of Optical Constants (Academic, New York, 1985).
  20. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984).
  21. S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov, Theory of Solitons: Inverse Scattering method (Consultants Bureau, New York, 1980).
  22. I. Towers, R. A. Sammut, A. V. Buryak, and B. A. Malomed, “Soliton multistability as a result of double-resonance wave mixing in χ(2) media,” Opt. Lett. 24, 1738–1740 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited