OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 1920–1925

Quantum self-homodyne tomography with an empty cavity

Jing Zhang, Tiancai Zhang, Kuanshou Zhang, Changde Xie, and Kunchi Peng  »View Author Affiliations

JOSA B, Vol. 17, Issue 11, pp. 1920-1925 (2000)

View Full Text Article

Acrobat PDF (151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a scheme to reconstruct the optical quantum state of a single-mode bright light field by using the dispersion characteristics of the empty cavity. The input field has a strong coherent component at frequency ω0, which serves as a local oscillator (LO) to measure its two-sideband mode at ω0±Ω. We control the relative phase of the 0–2π range between the LO and the two-sideband mode by scanning the cavity length, so the optical quantum state is tomographically reconstructed. In the proposed scheme the influence of the space-mode mismatch between the LO and measured mode on the quantum efficiency is eliminated, and this scheme can conveniently be used in some quantum optical systems in which LO field cannot be available.

© 2000 Optical Society of America

OCIS Codes
(270.6570) Quantum optics : Squeezed states

Jing Zhang, Tiancai Zhang, Kuanshou Zhang, Changde Xie, and Kunchi Peng, "Quantum self-homodyne tomography with an empty cavity," J. Opt. Soc. Am. B 17, 1920-1925 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989).
  2. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).
  3. D. T. Smithey, M. Beck, J. Cooper, and M. G. Raymer, “Measurement of number-phase uncertainty relations of optical fields,” Phys. Rev. A 48, 3159–3167 (1993).
  4. G. Breitenbach, T. Muller, S. F. Pereira, J. Ph. Poizat, S. Schiller, and J. Mlynek, “Squeezed vacuum from a monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2304–2309 (1995).
  5. H. Kuhn, D. G. Welsch, and W. Vogel, “Determination of density matrices from field distributions and quasiprobilities,” J. Mod. Opt. 41, 1607–1613 (1994).
  6. A. Zuchetti, W. Vogel, D. G. Welsch, and M. Tasche, “Direct sampling of density matrices in field-strength bases,” Phys. Rev. A 54, 1–4 (1996).
  7. G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris, “Detection of the density matrix through optical homodyne tomography without filtered back projection,” Phys. Rev. A 50, 4298–4302 (1994).
  8. U. Leonhardt, M. Munroe, T. Kiss, T. Richter, and M. G. Raymer, “Sampling of the photon statistics and density matrix using homodyne detection,” Opt. Commun. 127, 144–160 (1996).
  9. M. Munroe, D. Boggavarapu, M. E. Anderson, and M. G. Raymer, “Photon number statistics from the phase-averaged quadrature field distribution: theory and ultrafast measurement,” Phys. Rev. A 52, R924–R927 (1995).
  10. S. Schiller, G. Breitenbach, S. F. Pereira, T. Muller, and J. Mlynek, “Quantum statistics of the squeezed vacuum by measurement of the density matrix in the number state representation,” Phys. Rev. Lett. 77, 2933–2936 (1996).
  11. J. H. Shapiro and A. Shakeel, “Optimizing homodyne of detection of quadrature noise squeezing by local-oscillator selection,” J. Opt. Soc. Am. B 14, 232–239 (1997).
  12. G. M. D’Ariano, U. Leonhardt, and H. Paul, “Homodyne detection of the density matrix of the radiation field,” Phys. Rev. A 52, R1801–R1804 (1995).
  13. G. M. D’Ariano, M. Vasilyev, and P. Kumar, “Self-homodyne tomography of a twin-beam state,” Phys. Rev. A 58, 636–648 (1998).
  14. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. Devoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691–694 (1986).
  15. P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, “System control by variation of the squeezing phase,” Opt. Commun. 85, 95–103 (1991).
  16. Y. Qu, M. Xiao, G. S. Holliday, S. Singh, and H. J. Kimble, “Enhancement of photon antibunching by passive interferometry,” Phys. Rev. A 45, 4932–4943 (1992).
  17. T. C. Zhang, J. P. Poizat, P. Grelu, J. F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7, 601–613 (1995).
  18. C. Fabre and S. Reynaud, “Quantum noise in optical systems: a semiclassical approach,” in Fundamental Systems in Quantum Optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1991), pp. 1–42.
  19. G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).
  20. G. Breitenbach and S. Schiller, “Homodyne tomography of classical and non-classical light,” J. Mod. Opt. 44, 2207–2225 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited