OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 1926–1933

Coexistence of thermal noise and squeezing in the intensity fluctuations of small laser diodes

Holger F. Hofmann and Ortwin Hess  »View Author Affiliations

JOSA B, Vol. 17, Issue 11, pp. 1926-1933 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The intensity fluctuations of laser light are derived from photon number rate equations. In the limit of short times, the photon statistics for small laser devices such as typical semiconductor laser diodes show thermal characteristics, even above threshold. In the limit of long-time averages represented by the low-frequency component of the noise, the same devices exhibit squeezing. It is shown that squeezing and thermal noise can coexist in the multimode output field of laser diodes. This result implies that the squeezed light generated by regularly pumped semiconductor laser diodes is qualitatively different from single-mode squeezed light. In particular, no entanglement between photons can be generated by use of this type of collective multimode squeezing.

© 2000 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.3430) Quantum optics : Laser theory
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states

Holger F. Hofmann and Ortwin Hess, "Coexistence of thermal noise and squeezing in the intensity fluctuations of small laser diodes," J. Opt. Soc. Am. B 17, 1926-1933 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Haken, “Nonlinear theory of laser noise and coherence. I,” Z. Phys. 181, 96–124 (1964). [CrossRef]
  2. M. O. Scully and W. E. Lamb, “Quantum theory of the optical maser. I. General theory,” Phys. Rev. 159, 208–226 (1967). [CrossRef]
  3. M. Lax and W. H. Louisell, “Quantum Noise. XII. Density-operator treatment of field and population fluctuations,” Phys. Rev. 185, 568–591 (1969). [CrossRef]
  4. H. Risken, “Statistical properties of laser light,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1970), Chap. VIII, pp. 239–294.
  5. F. T. Arecchi and O. E. Schulz-Dubois, eds., Laser Handbook (North-Holland, Amsterdam, 1972), Vol. I.
  6. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986). [CrossRef] [PubMed]
  7. S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987). [CrossRef] [PubMed]
  8. S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988). [CrossRef] [PubMed]
  9. S. Machida and Y. Yamamoto, “Observation of amplitude squeezing from semiconductor lasers by balanced direct detection with a delay line,” Opt. Lett. 14, 1045–1047 (1989). [CrossRef] [PubMed]
  10. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757–2763 (1992). [CrossRef] [PubMed]
  11. M. J. Freeman, D. C. Kilper, D. G. Steel, D. Craig, and D. R. Scifres, “Room-temperature amplitude-squeezed light from an injection-locked quantum-well laser with a time-varying drive current,” Opt. Lett. 20, 183–185 (1995). [CrossRef] [PubMed]
  12. D. C. Kilper, D. G. Steel, D. Craig, and D. R. Scifres, “Polarization-dependent noise in photon-number squeezed light generated by quantum-well lasers,” Opt. Lett. 21, 1283–1285 (1996). [CrossRef] [PubMed]
  13. T. A. B. Kennedy and D. F. Walls, “Amplitude noise reduction in atomic and semiconductor lasers,” Phys. Rev. A 40, 6366–6373 (1989). [CrossRef] [PubMed]
  14. For a compact explanation of this procedure, see, e.g., D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994), pp. 229 ff.
  15. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4609 (1995). [CrossRef] [PubMed]
  16. A. Eschmann and C. W. Gardiner, “Master-equation theory of multimode semiconductor lasers,” Phys. Rev. A 54, 760–775 (1996). [CrossRef] [PubMed]
  17. For a practical introduction of the relevant device properties, see, e.g., K. J. Ebeling, Integrated Quantum Electronics (Springer-Verlag, Berlin, 1992). A theoretical derivation from band structure properties can be found in H. F. Hofmann and O. Hess, “Quantum Maxwell–Bloch equations for spatially inhomogeneous semiconductor lasers,” Phys. Rev. A 59, 2342–2358 (1998). [CrossRef]
  18. N. J. van Druten, Y. Lien, C. Serrat, S. S. R. Oemrawsingh, M. P. van Exter, and J. P. Woerdman, “Laser with thresholdless intensity fluctuations,” Phys. Rev. A (to be published).
  19. Y. M. Golubev, I. V. Sokolov, and M. I. Kolobov, “Possibility of suppressing quantum light fluctuations when excess photon fluctuations occur inside a cavity,” JETP 84, 864–874 (1997). [CrossRef]
  20. L. D. Landau and E. M. Lifschitz, Statistische Physik (Akademie Verlag, Berlin, 1987), Sec. 75.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited