OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 11 — Nov. 1, 2000
  • pp: 1934–1942

High-resolution study of xenon autoionization using direct vacuum-ultraviolet laser excitation

Andrew Kortyna, Murray R. Darrach, Pui-Teng Howe, and Ara Chutjian  »View Author Affiliations

JOSA B, Vol. 17, Issue 11, pp. 1934-1942 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new, direct vacuum-ultraviolet laser-excitation method is used to study the single-photon autoionization of xenon atoms in the 5p65p5 ns[1/2]10 (14n52) and 5p65p5 nd[3/2]10 (16n78) autoionizing Rydberg series. Fano profile parameters for both series are reported over the entire range of observed states. From analysis of the nd series an ionization potential Td=108 370.82±0.05 cm-1 is obtained. This agrees well with a previously reported limit of 108 370.8±0.2 cm-1.

© 2000 Optical Society of America

OCIS Codes
(020.5780) Atomic and molecular physics : Rydberg states
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Andrew Kortyna, Murray R. Darrach, Pui-Teng Howe, and Ara Chutjian, "High-resolution study of xenon autoionization using direct vacuum-ultraviolet laser excitation," J. Opt. Soc. Am. B 17, 1934-1942 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Beutler, “Über absorptionsserien von argon, krypton und xenon in termen zwischen den beiden ionisierungsgrenzen 2P3/2 and 2P1/2,” Z. Phys. 93, 177–191 (1935). [CrossRef]
  2. R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions,” J. Chem. Phys. 39, 902–909 (1963). [CrossRef]
  3. F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329–333 (1965). [CrossRef]
  4. P. H. Metzger and G. R. Cook, “Flux distribution of the Hopfield helium continuum from the photoionization of Ar, Kr, and Xe,” J. Opt. Soc. Am. 55, 516–520 (1965). [CrossRef]
  5. K. Yoshino and D. E. Freeman, “Absorption spectrum of xenon in the vacuum-ultraviolet region,” J. Opt. Soc. Am. B 2, 1268–1274 (1985). [CrossRef]
  6. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  7. F. H. Mies, “Configuration interaction theory: effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968). [CrossRef]
  8. U. Fano and J. W. Cooper, “Line profiles in the far-UV absorption spectra of the rare gases,” Phys. Rev. 137, A1364–A1379 (1961). [CrossRef]
  9. U. Fano, “Unified treatment of perturbed series, continuous spectra, and collisions,” J. Opt. Soc. Am. 65, 979–987 (1975). [CrossRef]
  10. M. J. Seaton, “Quantum defect theory. I. General formulation,” Proc. Phys. Soc. London 88, 801–814 (1966); M. J. Seaton, “Quantum defect theory. II. Illustrative one-channel and two-channel problems,” Proc. Phys. Soc. London 88, 815–832 (1966); W. Eissner, H. Nussbaumer, H. E. Saraph, and M. J. Seaton, “Resonance in cross sections for excitation of forbidden lines in O2+,” J. Phys. B JPAMA4 2, 341–355 (1969). [CrossRef]
  11. C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982). [CrossRef]
  12. D. A. Harmin, “Hydrogenic Stark effect: properties of the wavefunction,” Phys. Rev. A 24, 2491–2517 (1981); D. A. Harmin, “Theory of the Stark effect,” Phys. Rev. A 26, 2656–2681 (1982). [CrossRef]
  13. F. H. Mies, “A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering,” J. Chem. Phys. 80, 2514–2525 (1984); F. H. Mies and P. S. Julienne, “A multichannel quantum defect analysis of two-state couplings in diatomic molecules,” J. Chem. Phys. 80, 2526–2536 (1984). [CrossRef]
  14. W. L. Cooke and C. L. Cromer, “Multichannel quantum-defect theory and an equivalent N-level system,” Phys. Rev. A 32, 2725–2738 (1985). [CrossRef] [PubMed]
  15. K. Ueda, “Spectral line shapes of autoionizing Rydberg series of xenon,” J. Opt. Soc. Am. B 4, 424–427 (1987). [CrossRef]
  16. J. P. Connerade, “On Rydberg series of autoionizing resonances,” J. Phys. B 16, L329–L335 (1983). [CrossRef]
  17. J. Dubau and M. J. Seaton, “Quantum defect theory. XIII. Radiative transitions,” J. Phys. B 17, 381–403 (1984). [CrossRef]
  18. A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. I. Symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215–230 (1984); A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. II. A Hamiltonian model,” J. Phys. B 17, 4267–4275 (1984); A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. III. Note on a narrow band in the Ba J=2 spectrum,” J. Phys. B JPAMA4 17, 4277–4283 (1984). [CrossRef]
  19. K. Ueda, “Spectral shapes of autoionizing Rydberg series,” Phys. Rev. A 35, 2484–2492 (1987). [CrossRef] [PubMed]
  20. R. P. Madden and K. Codling, “Two-electron excitation states in helium,” Astrophys. J. 141, 364–375 (1965). [CrossRef]
  21. A. Chutjian and R. Carlson, “Curves of growth of autoionizing spectral lines with application to the 3s–4p transition in argon,” J. Opt. Soc. Am. 60, 1204–1208 (1970). [CrossRef]
  22. F. J. Comes, H. G. Sälzer, and G. Schumpe, “Autoionisation in atomspektren,” Z. Naturforsch. Teil A 23, 137–151 (1967).
  23. K. D. Bonin, T. J. McIlrath, and K. Yoshino, “High-resolution laser and classical spectroscopy of xenon autoionization,” J. Opt. Soc. Am. B 2, 1275–1283 (1985). [CrossRef]
  24. J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990). [CrossRef]
  25. K. Maeda, K. Ueda, T. Namioka, and K. Ito, “High-resolution measurement of Beutler–Fano profiles for autoionizing Rydberg series of Xe,” Phys. Rev. A 45, 527–530 (1992); K. Maeda, K. Ueda, T. Namioka, and K. Ito, “High-resolution measurement for photoabsorption cross sections in the autoionization regions of Ar, Kr, and Xe,” J. Phys. B 26, 1541–1555 (1993). [CrossRef] [PubMed]
  26. S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49, 3322–3332 (1994). [CrossRef] [PubMed]
  27. R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987). [CrossRef]
  28. E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, “Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm),” Chem. Phys. Lett. 95, 486–491 (1983). [CrossRef]
  29. A. H. Kung, “Third-harmonic generation in a pulsed supersonic jet of xenon,” Opt. Lett. 8, 24–26 (1983). [CrossRef] [PubMed]
  30. C. T. Rettner, E. E. Marinero, R. N. Zare, and A. H. Kung, “Pulsed free jets: a novel nonlinear media for generation of vacuum ultraviolet and extreme ultraviolet radiation,” J. Chem. Phys. 88, 4459–4465 (1984). [CrossRef]
  31. M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993). [CrossRef]
  32. W. A. Chupka, “Factors affecting lifetimes and resolutions of Rydberg states observed in zero-electron-kinetic-energy spectroscopy,” J. Chem. Phys. 98, 4520–4530 (1993); F. Merkt, H. H. Fielding, and T. P. Softley, “Electric field effects on zero-kinetic-energy-photoelectron spectra: an explanation of observed trends,” Chem. Phys. Lett. 202, 153–160 (1993). [CrossRef]
  33. A. Chutjian and S. H. Alajajian, “s-Wave threshold in electron attachment: observations and cross sections in CCl4 and SF6 at ultralow electron energies,” Phys. Rev. A 31, 2885–2892 (1985). [CrossRef] [PubMed]
  34. W. H. Press, B. P. Flannery, S. A. Teukkolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge, UK, 1983), pp. 521–528.
  35. K. Radler and J. Berkowitz, “Photoionization mass spectrometry of neon using synchrotron radiation: anomalous variations of resonance widths in the noble gases,” J. Chem. Phys. 70, 216–220 (1979). [CrossRef]
  36. J. R. Taylor, An Introduction to Error Analysis (University Science, Mill Valley, Calif., 1997), pp. 181–197.
  37. C. E. Moore, Ionization Potentials and Ionization Limits Derived From the Analyses of Optical Spectra, National Standard Reference Data Series—National Bureau of Standards 34 (U.S. GPO, Washington, D.C., 1970).
  38. L. Wang and R. D. Knight, “Two-photon laser spectroscopy of ns and nd autoionizing Rydberg series in xenon,” Phys. Rev. A 34, 3902–3907 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited