OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2037–2042

Impurity modes in a two-dimensional photonic crystal: coupling efficiency and Q factor

Mario Agio, Elefterios Lidorikis, and Costas M. Soukoulis  »View Author Affiliations

JOSA B, Vol. 17, Issue 12, pp. 2037-2042 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A finite two-dimensional photonic crystal with a triangular lattice of air columns in a dielectric background is designed with a waveguide and a resonant cavity. By a time-domain solution of Maxwell’s equations we observe the existence of impurity modes inside the photonic bandgap. An electromagnetic wave launched through the waveguide, with an appropriate frequency, can enhance the field inside the cavity and yield a peak in the transmission. Considering a manufactured structure, in which the columns are not perfectly equal, we repeat our calculations and analyze how the impurity modes are modified. For both cases, periodic and real, we measure the quality factor of the cavity.

© 2000 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

Mario Agio, Elefterios Lidorikis, and Costas M. Soukoulis, "Impurity modes in a two-dimensional photonic crystal: coupling efficiency and Q factor," J. Opt. Soc. Am. B 17, 2037-2042 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovich, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton University, Princeton, N.J., 1995).
  4. C. M. Soukoulis, ed., Photonic Band Gaps Materials, Vol. 315 of NATO ASI Ser., Ser. E Applied Sciences (Kluwer Academic, Dortrecht, The Netherlands, 1996).
  5. C. Weisbuch and J. Rarity, eds., Microcavities and Photonic Band Gaps: Physics and Applications, Vol. 324 of NATO ASI Ser., Ser. E Applied Sciences (Kluwer Academic, Dortrecht, The Netherlands, 1996).
  6. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994). [CrossRef]
  7. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996). [CrossRef]
  8. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  9. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  10. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997). [CrossRef]
  11. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998). [CrossRef] [PubMed]
  12. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155–1159 (1998). [CrossRef]
  13. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999). [CrossRef]
  14. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–701 (1996). [CrossRef]
  15. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997). [CrossRef]
  16. A. Birner, U. Grüning, S. Ottow, A. Schneider, F. Müller, V. Lehmann, H. Föll, and U. Gösele, “Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range,” Phys. Status Solidi A 165, 111–117 (1998). [CrossRef]
  17. D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, and U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional pho-tonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999). [CrossRef]
  18. A. Birner, Max-Planck-Institüt, Halle, Germany (private communication, 2000).
  19. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  20. A. Tavlove, Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  21. Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sinica A 27, 1063–1076 (1984).
  22. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic me-dia,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  23. The four digits diameters’ values, shown in Fig. 2, are determined by the Halle group from the analysis of the SEM picture. Because of the fluctuations along the pores and the method used to obtain the diameters, only the first three digits are reliable. However, the fourth digit does not significantly affect the results and can be neglected in the calculations.
  24. When the source is suddenly switched off, all frequencies are introduced. However, they rapidly fade away, and the frequency of the cavity mode is the only one surviving.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited