OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2055–2067

Laser-relevant spectroscopy and upconversion mechanisms of Er3+ in Ba2YCl7 pumped at 800 nm

R. Burlot-Loison, M. Pollnau, K. Krämer, P. Egger, J. Hulliger, and H. U. Güdel  »View Author Affiliations

JOSA B, Vol. 17, Issue 12, pp. 2055-2067 (2000)

View Full Text Article

Acrobat PDF (270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comprehensive spectroscopic study of the possible room-temperature green laser transition 2H9/24I13/2 in Ba2YCl7:3%Er3+. Because of the low phonon energies, 270 cm−1 in Ba2YCl7, the otherwise multiphonon-quenched 4I9/2 and 2H9/2 levels are metastable and can serve as intermediate pump and upper laser levels, respectively, for a green upconversion laser excited at 800 nm. Polarized spectra of ground-state and excited-state absorption at 800 nm and of emission at 560 nm are measured, and the corresponding absorption and emission cross sections are derived. Luminescence-decay measurements provide lifetime data. Despite the large number of metastable levels of Er3+ in a low-phonon host material, luminescence spectra and intensity-versus-power measurements reveal that the energy dissipation into levels other than those required for the operation of the laser transition (i.e., 4I15/24I9/22H9/24I13/2) is small at low dopant concentrations. At higher concentrations, an energy-transfer upconversion process populates the lower laser level and counteracts inversion. The theoretical pump threshold of the proposed upconversion-laser transition under cw and pulsed excitation is derived.

© 2000 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6360) Spectroscopy : Spectroscopy, laser

R. Burlot-Loison, M. Pollnau, K. Krämer, P. Egger, J. Hulliger, and H. U. Güdel, "Laser-relevant spectroscopy and upconversion mechanisms of Er3+ in Ba2YCl7 pumped at 800 nm," J. Opt. Soc. Am. B 17, 2055-2067 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, “Generation of high-power blue light in periodically poled LiNbO3,” Opt. Lett. 23, 171–173 (1998).
  2. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740-mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,” Opt. Lett. 24, 205–207 (1999).
  3. T. Sandrock, H. Scheife, E. Heumann, and G. Huber, “High-power continuous-wave upconversion fiber laser at room temperature,” Opt. Lett. 22, 808–810 (1997).
  4. R. J. Thrash and L. F. Johnson, “Upconversion laser emission from Yb-sensitized Tm in BYF,” J. Opt. Soc. Am. B 11, 881–885 (1994).
  5. R. Paschotta, P. R. Barber, A. C. Tropper, and D. C. Hanna, “Characterization and modeling of thulium:ZBLAN blue-upconversion fiber lasers,” J. Opt. Soc. Am. B 14, 1213–1218 (1997).
  6. P. E.-A. Möbert, A. Diening, E. Heumann, G. Huber, and B. H. T. Chai, “Room-temperature continuous-wave upconversion-pumped laser emission in Ho, Yb:KYF4 at 756, 1070, and 1390 nm,” Laser Phys. 8, 210–213 (1998).
  7. L. F. Johnson and H. J. Guggenheim, “New laser lines in the visible from Er3+ ions in BaY2F8,” Appl. Phys. Lett. 20, 474–477 (1972).
  8. T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991).
  9. J. Y. Allain, M. Monerie, and H. Poignant, “Tunable green-upconversion erbium fibre laser,” Electron. Lett. 28, 111–113 (1992).
  10. D. Piehler and D. Craven, “Green laser diode pumped erbium fiber laser,” in Compact Blue-Green Lasers, Vol. 1 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 65–67.
  11. A. J. Silversmith, W. Lenth, and R. M. Macfarlane, “Green infrared-pumped erbium upconversion laser,” Appl. Phys. Lett. 51, 1977–1979 (1987).
  12. R. A. McFarlane, “Dual wavelength visible upconversion laser,” Appl. Phys. Lett. 54, 2301–2302 (1989).
  13. P. Xie and S. C. Rand, “Visible cooperative upconversion laser in Er:LiYF4,” Opt. Lett. 17, 1198–1200 (1992).
  14. R. R. Stephens and R. A. McFarlane, “Diode-pumped upconversion laser with 100-mW output power,” Opt. Lett. 18, 34–36 (1993).
  15. R. Brede, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Room temperature green laser emission of Er3+:LiYF4,” Appl. Phys. Lett. 63, 729–730 (1993).
  16. R. Brede, E. Heumann, J. Koetke, T. Danger, G. Huber, and B. Chai, “Green upconversion laser emission in Er-doped crystals at room temperature,” Appl. Phys. Lett. 63, 2030–2031 (1993).
  17. F. Heine, E. Heumann, T. Danger, T. Schweizer, G. Huber, and B. Chai, “Green upconversion continuous wave Er3+:LiYF4 laser at room temperature,” Appl. Phys. Lett. 65, 383–384 (1994).
  18. R. A. McFarlane, “Upconversion laser in BaY2F8:Er 5% pumped by ground-state and excited-state absorption,” J. Opt. Soc. Am. B 11, 871–880 (1994).
  19. R. Scheps, “Er3+:YAlO3 upconversion laser,” IEEE J. Quantum Electron. 30, 2914–2924 (1994).
  20. R. Scheps, “Photon avalanche upconversion in Er3+:YAlO3,” IEEE J. Quantum Electron. 31, 309–316 (1995).
  21. R. S. Quimby, W. J. Miniscalco, and B. Thompson, “Excited state absorption at 980 nm in erbium doped glass,” in Fiber Laser Sources and Amplifiers III, M. Digonnot and E. Snitzer, eds., Proc. SPIE 1581, 72–79 (1991).
  22. M. Pollnau, E. Heumann, and G. Huber, “Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3,” Appl. Phys. A 54, 404–410 (1992).
  23. T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai, “Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature,” J. Appl. Phys. 76, 1413–1422 (1994).
  24. M. Pollnau, W. Lüthy, H. P. Weber, K. Krämer, H. U. Güdel, and R. A. McFarlane, “Excited-state absorption in Er:BaY2F8 and Cs3Er2Br9 and comparison with Er:LiYF4,” Appl. Phys. B 62, 339–344 (1996).
  25. M. Pollnau, Ch. Ghisler, W. Lüthy, and H. P. Weber, “Cross sections of excited-state absorption at 800 nm in erbium-doped ZBLAN fiber,” Appl. Phys. B 67, 23–28 (1998).
  26. R. Burlot-Loison, J.-L. Doualan, P. Le Boulanger, T. P. J. Han, H. G. Gallagher, R. Moncorgé, and G. Boulon, “Excited-state absorption of Er3+-doped LiNbO3,” J. Appl. Phys. 85, 4165–4170 (1999).
  27. J. P. van der Ziel, F. W. Ostermayer, Jr., and L. G. van Uitert, “Infrared excitation of visible luminescence in Y1−xErxF3 via resonant energy transfer,” Phys. Rev. B 2, 4432–4441 (1970).
  28. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy-transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
  29. M. Pollnau, E. Heumann, and G. Huber, “Stimulated emission and excited-state absorption on the 550 nm-laser transition in Er3+ doped YAlO3,” J. Lumin. 60+61, 842–845 (1994).
  30. S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+ doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60, 162–178 (1999).
  31. M. P. Hehlen, K. Krämer, H. U. Güdel, R. A. McFarlane, and R. N. Schwartz, “Upconversion in Er3+ dimer systems. Trends within the series Cs3Er2X9(X=Cl, Br, I),” Phys. Rev. B 49, 12475–12484 (1994).
  32. M. P. Hehlen, G. Frei, and H. U. Güdel, “Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+,” Phys. Rev. B 50, 16264–16273 (1994).
  33. K. Krämer, H. U. Güdel, and R. N. Schwartz, “NIR to VIS upconversion in LaCl3:1%Er3+. One- and two-color excitations around 1000 and 800 nm,” J. Alloys Compd. 275–277, 191–195 (1998).
  34. N. J. Cockroft, G. D. Jones, and D. C. Nguyen, “Dynamics and spectroscopy of infrared-to-visible upconversion in erbium-doped cesium cadmium bromide (CsCdBr3:Er3+),” Phys. Rev. B 45, 5187–5198 (1992).
  35. T. Riedener, P. Egger, J. Hulliger, and H. U. Güdel, “Upconversion mechanism in Er3+-doped Ba2YCl7,” Phys. Rev. B 56, 1800–1808 (1997).
  36. P. Egger, R. Burkhalter, and J. Hulliger, “Czochralski growth of Ba2Y1−xErxCl7(0<x≤1) using growth equip-ment integrated into a dry-box,” J. Cryst. Growth 200, 515–520 (1999).
  37. M. S. Wickleder, P. Egger, T. Riedener, N. Furer, H. U. Güdel, and J. Hulliger, “Synthesis and crystal structure of the new ternary halide series Ba2MCl7(M=Gd-Yb, Y) containing the highly efficient up-conversion material Ba2ErCl7,” Chem. Mat. 8, 2828–2831 (1996).
  38. R. Burlot, R. Moncorgé, H. Manaa, G. Boulon, Y. Guyot, J. Garcia-Solé, and D. Cochet-Muchy, “Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3 and LiTaO3 single crystals relevant for laser applications,” Opt. Mater. 6, 313–330 (1996).
  39. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
  40. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991).
  41. J. Rubin, A. Brenier, R. Moncorgé, and C. Pédrini, “Excited-state absorption and energy transfer in Er3+-doped LiYF4,” J. Lumin. 36, 39–47 (1986).
  42. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
  43. M. Pollnau, Th. Graf, J. E. Balmer, W. Lüthy, and H. P. Weber, “Explanation of the cw operation of the erbium 3-μm crystal laser,” Phys. Rev. B 49, 3990–3996 (1994).
  44. R. S. Quimby and W. J. Miniscalco, “Continuous-wave lasing on a self-terminating transition,” Appl. Opt. 28, 14–16 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited