OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 239–246

Suppression of transverse instabilities in a laser by use of a spatially filtered feedback

Hong Lin  »View Author Affiliations

JOSA B, Vol. 17, Issue 2, pp. 239-246 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of a spatially filtered negative feedback on a laser that supports many transverse modes is studied. The Lyapunov theorem is used to find an analytical expression of the parameter domain in which the laser can be stabilized in the plane-wave state by the feedback. The prediction of the Lyapunov theorem is compared with that of the Routh–Hurwitz criterion and is verified by the results of numerical simulation. The numerical studies also show that the spatially filtered feedback can direct the laser to the plane-wave state from a distant initial state.

© 2000 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3560) Lasers and laser optics : Lasers, ring
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

Hong Lin, "Suppression of transverse instabilities in a laser by use of a spatially filtered feedback," J. Opt. Soc. Am. B 17, 239-246 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199 (1990). [CrossRef] [PubMed]
  2. W. L. Ditto, S. N. Rauseo, and M. L. Spano, “Experimental control of chaos,” Phys. Rev. Lett. 65, 3211–3214 (1990). [CrossRef] [PubMed]
  3. E. R. Hunt, “Stabilizing high-period orbits in a chaotic system: the diode resonator,” Phys. Rev. Lett. 67, 1953–1955 (1991). [CrossRef] [PubMed]
  4. K. Pyragas, “Continuous control of chaos by self-controlling feedback,” Phys. Lett. A 170, 421–428 (1992). [CrossRef]
  5. R. Roy, T. W. Murphy, Jr., T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser: experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259–1262 (1992). [CrossRef] [PubMed]
  6. S. Bielawski, D. Derozier, and P. Glorieux, “Experimental characterization of unstable periodic orbits by controlling chaos,” Phys. Rev. A 47, R2492–R2495 (1993). [CrossRef] [PubMed]
  7. C. Reyl, L. Flepp, R. Badii, and E. Brun, “Control of NMR-laser chaos in high-dimensional embedding space,” Phys. Rev. E 47, 267–272 (1993). [CrossRef]
  8. D. J. Gauthier, D. W. Sukow, H. M. Concannon, and J. E. S. Socolar, “Stabilizing unstable periodic orbits in a fast diode resonator,” Phys. Rev. E 50, 2343–2346 (1994). [CrossRef]
  9. J. M. Perez, J. Steinshnider, R. E. Stallcup, and A. F. Aviles, “Control of chaos in a CO2 laser,” Appl. Phys. Lett. 65, 1216–1218 (1994). [CrossRef]
  10. W. Lu and R. Harrison, “Controlling chaos using continuous interference feedback: proposal for all optical devices,” Opt. Commun. 109, 457–461 (1994). [CrossRef]
  11. J.-H. Dai, H.-W. Yin, and H.-J. Zhang, “Controlling chaos in a hybrid optical bistable system,” Opt. Commun. 120, 85–90 (1995). [CrossRef]
  12. C. Simmendinger and O. Hess, “Controlling delay-induced chaotic behavior of a semiconductor laser with optical feedback,” Phys. Lett. A 216, 97–105 (1996). [CrossRef]
  13. D. J. Gauthier, “Controlling lasers by use of extended time-delay autosynchronization,” Opt. Lett. 23, 703–705 (1998). [CrossRef]
  14. G. Hu and K. He, “Controlling chaos in systems described by partial differential equations,” Phys. Rev. Lett. 71, 3794–3797 (1993). [CrossRef]
  15. G. Hu and Z. Qu, “Controlling spatiotemporal chaos in coupled map lattice systems,” Phys. Rev. Lett. 72, 68–71 (1994). [CrossRef]
  16. F. Qin, E. E. Wolf, and H.-C. Chang, “Controlling spatiotemporal patterns on a catalytic wafer,” Phys. Rev. Lett. 72, 1459–1462 (1994). [CrossRef] [PubMed]
  17. C. Lourenco, M. Hougardy, and A. Babloyantz, “Control of low-dimensional spatiotemporal chaos in Fourier space,” Phys. Rev. E 52, 1528–1532 (1995). [CrossRef]
  18. W. Lu, D. Yu, and R. G. Harrison, “Control of patterns in spatiotemporal chaos in optics,” Phys. Rev. Lett. 76, 3316–3319 (1996); “Tracking periodic patterns into spatiotemporal chaotic regimes,” Phys. Rev. Lett. 78, 4375–4378 (1997). [CrossRef] [PubMed]
  19. M. E. Bleich, D. Hochheiser, J. V. Moloney, and J. E. S. Socolar, “Controlling extended systems with spatially filtered, time-delayed feedback,” Phys. Rev. E 55, 2119–2126 (1997). [CrossRef]
  20. R. Martin, A. J. Scroggie, G.-L. Oppo, and W. J. Firth, “Stabilization, selection, and tracking of unstable patterns by Fourier space techniques,” Phys. Rev. Lett. 77, 4007–4010 (1996); R. Martin, G.-L. Oppo, G. K. Harkness, A. J. Scroggie, and W. J. Firth, “Controlling pattern formation and spatio-temporal disorder in nonlinear optics,” Opt. Express 1, 39–43 (1997), http://epubs.osa.org/opticsexpress. [CrossRef] [PubMed]
  21. G. K. Harkness, G.-L. Oppo, R. Martin, A. J. Scroggie, and W. J. Firth, “Elimination of spatiotemporal disorder by Fourier space techniques,” Phys. Rev. A 58, 2577–2585 (1998). [CrossRef]
  22. A. V. Mamaev and M. Saffman, “Selection of unstable patterns and control of optical turbulence by Fourier plane filtering,” Phys. Rev. Lett. 80, 3499–3502 (1998); S. J. Jensen, M. Schwab, and C. Denz, “Manipulation, stabilization, and control of pattern formation using Fourier space filtering,” Phys. Rev. Lett. 81, 1614–1617 (1998). [CrossRef]
  23. R. O. Grigoriev, M. C. Cross, and H. G. Schuster, “Pinning control of spatiotemporal chaos,” Phys. Rev. Lett. 79, 2795–2798 (1997). [CrossRef]
  24. L. A. Lugiato, C. Oldano, and L. M. Narducci, “Cooperative frequency locking and stationary spatial structures in lasers,” J. Opt. Soc. Am. B 5, 879–888 (1988). [CrossRef]
  25. H. Lin and N. B. Abraham, “Mode formation and beating in the transverse pattern dynamics in a laser,” Opt. Commun. 79, 476–488 (1990). [CrossRef]
  26. H. Lin and N. B. Abraham, “Transverse pattern variations in a laser with a parabolic excitation profile,” J. Opt. Soc. Am. B 8, 2429–2436 (1991). [CrossRef]
  27. H. Lin, “Numerical and experimental study of transverse dynamics in a laser with several transverse modes,” Ph.D. dissertation (Bryn Mawr College, Bryn Mawr, Penn., 1991).
  28. L. A. Lugiato, R. J. Horowicz, G. Strini, and L. M. Narducci, “Instabilities in passive and active optical systems with a Gaussian transverse intensity profile,” Phys. Rev. A 30, 1366–1376 (1984). [CrossRef]
  29. C.-T. Chen, Linear System Theory and Design (Holt, Rinehart & Winston, New York, 1984), pp. 412–417.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited