OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 256–265

Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes

Koen Clays, Kurt Wostyn, Geert Olbrechts, André Persoons, Akira Watanabe, Kyoko Nogi, Xuan-Ming Duan, Shuji Okada, Hidetoshi Oikawa, Hachiro Nakanishi, Henryk Vogel, David Beljonne, and Jean-Luc Brédas  »View Author Affiliations


JOSA B, Vol. 17, Issue 2, pp. 256-265 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000256


View Full Text Article

Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A series of five fluorescent and ionic dimethylamino stilbazolium homologues with increasing conjugation length (from ethenyl to decapentaenyl) is investigated by high-frequency, amplitude-modulated femtosecond hyper-Rayleigh scattering at 1300 nm. A hyperpolarizability value that is not overestimated by the presence of a multiphoton fluorescence contribution is obtained from the Fourier analysis of the hyper-Rayleigh scattering signal. The demodulation curve (decrease of Fourier amplitude versus modulation frequency) is characterized by both the hyperpolarizability value and the fluorescence decay parameters. The fluorescence decay parameters are accurately determined independently by single-photon counting. A detailed analysis of the fluorescence decay parameters from the hyper-Rayleigh scattering demodulation curve and of their relation to the fluorescence decay parameters obtained from single-photon counting experiments is presented. The inherent hyperpolarizability value for these chromophores shows a maximum of (2045±35) 10<sup>−30</sup> esu or (760±13)×10<sup>−50</sup> C<sup>3</sup> m<sup>3</sup> J<sup>−2</sup> for the hexatrienyl conjugation length. A comparison with theoretical calculations suggests the importance of <i>trans–cis</i> isomerization in the excited state.

© 2000 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4890) Materials : Organic materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(290.5870) Scattering : Scattering, Rayleigh

Citation
Koen Clays, Kurt Wostyn, Geert Olbrechts, André Persoons, Akira Watanabe, Kyoko Nogi, Xuan-Ming Duan, Shuji Okada, Hidetoshi Oikawa, Hachiro Nakanishi, Henryk Vogel, David Beljonne, and Jean-Luc Brédas, "Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes," J. Opt. Soc. Am. B 17, 256-265 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-2-256


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, “Organic and polymeric ion-complexes for nonlinear optics,” in Materials Research Society International Meeting on Advanced Materials, M. Doyama, S. Somiya, and R. P. H. Chang, eds. (Materials Research Society, Pittsburgh, Pa., 1989), Vol. 1, pp. 97–104.
  2. G. R. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series, D. J. Williams, ed. (American Chemical Society, Washington, D.C., 1983), pp. 27–56.
  3. S. Marder, J. W. Perry, and W. P. Schaefer, “Synthesis of organic salts with large 2nd order optical nonlinearities,” Science 245, 626–628 (1989).
  4. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
  5. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
  6. K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Vol. 85 of Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1994), Pt. 3, pp. 455–498.
  7. T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
  8. X.-M. Duan, S. Okada, H. Nakanishi, A. Watanabe, M. Matsuda, K. Clays, and A. Persoons, “Evaluation of β of stilbazolium p-toluenesulfonates by the hyper-Rayleigh scattering method,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. R. Perry, eds., Proc. SPIE 2143, 41–51 (1994).
  9. M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyperRayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
  10. I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
  11. G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
  12. R. A. Huijts and G. L. J. Hesselink, “Length dependence of the second-order polarizability in conjugated organic molecules,” Chem. Phys. Lett. 126, 209–212 (1989).
  13. J. L. Oudar and H. L. Person, “Second-order polarizabilities of some aromatic molecules,” Opt. Commun. 15, 258–262 (1975).
  14. J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67, 446–457 (1977).
  15. A. Dulcic, C. Flytzanis, C. L. Tang, D. Pépin, M. Fétizon, and Y. Hoppilliard, “Length dependence of the second-order optical nonlinearity in conjugated hydrocarbons,” J. Chem. Phys. 74, 1559–1563 (1981).
  16. D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
  17. K. Nogi, M.S. thesis (Tohoku University, Sendai, Japan, 1999) (in Japanese).
  18. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, “AM1: a new general purpose quantum chemical mechanical molecular model,” J. Am. Chem. Soc. 107, 3902–3909 (1985).
  19. J. Ridley and M. Zerner, “An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines,” Theor. Chim. Acta 32, 111–134 (1973).
  20. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1974).
  21. T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, and J.-L. Brédas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
  22. E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995).
  23. K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E 22, 297–305 (1989).
  24. G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
  25. G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, “Nonlinear optical properties of hemicyanine monolayers and the protonation effect,” Chem. Phys. Lett. 147, 420–424 (1988).
  26. J. S. Schildkraut, T. L. Penner, C. S. Willand, and A. Ulman, “Absorption and second-harmonic generation of monomer and aggregate hemicyanine dye in Langmuir–Blodgett films,” Opt. Lett. 13, 134–136 (1988).
  27. K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
  28. B. Kippelen, S. R. Marder, E. Hendrickx, J. L. Maldonado, G. Guillemet, B. L. Volodin, D. D. Steele, Y. Enami, Sandalphon, Y. J. Yao, J. F. Wang, H. Röckel, L. Erskine, and N. Peyghambarian, “Infrared photorefractive polymers and their applications for imaging,” Science 279, 54–57 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited