OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 275–279

Sub-shot-noise frequency-modulation spectroscopy by use of amplitude-squeezed light from semiconductor lasers

Steven Kasapi, Seema Lathi, and Yoshihisa Yamamoto  »View Author Affiliations

JOSA B, Vol. 17, Issue 2, pp. 275-279 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated sub-shot-noise FM spectroscopy on thermal cesium atoms, using amplitude-squeezed light from a semiconductor laser. The light source used in our experiment was a custom-made GaAs transverse junction stripe semiconductor laser featuring broadband amplitude squeezing and a large FM bandwidth. We have also developed a new technique by which a semiconductor laser can be frequency modulated with infinitesimally small residual AM and with complete preservation of the squeezed-amplitude fluctuations.

© 2000 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(270.6570) Quantum optics : Squeezed states
(300.0300) Spectroscopy : Spectroscopy

Steven Kasapi, Seema Lathi, and Yoshihisa Yamamoto, "Sub-shot-noise frequency-modulation spectroscopy by use of amplitude-squeezed light from semiconductor lasers," J. Opt. Soc. Am. B 17, 275-279 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. V. Pound, Rev. Sci. Instrum. 17, 490–493 (1946). [CrossRef] [PubMed]
  2. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 1–3 (1980). [CrossRef]
  3. K. Chan, H. Ito, and H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33-μm region,” Appl. Phys. Lett. 43, 635–637 (1983). [CrossRef]
  4. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981). [CrossRef]
  5. W. Lenth, C. Ortiz, and G. C. Bjorklund, “Pulsed frequency-modulation spectroscopy as a means for absorption measurements,” Opt. Lett. 6, 351–353 (1981). [CrossRef] [PubMed]
  6. M. D. Levenson, W. E. Moerner, and D. E. Horne, “FM spectroscopy detection of stimulated Raman gain,” Opt. Lett. 8, 108–110 (1983). [CrossRef] [PubMed]
  7. D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, “Coherent nonlinear optical spectroscopy using photon-number squeezed light,” Phys. Rev. A 54, R1785–R1788 (1996). [CrossRef] [PubMed]
  8. N. Ph. Georgiades, R. J. Thompson, Q. Turchette, E. S. Polzik, and H. J. Kimble, “Spectroscopy with nonclassical light,” in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 222–223.
  9. E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B: 55, 279–290 (1992). [CrossRef]
  10. M. Xiao, L.-A. Wu, and H. Kimble, “Detection of amplitude modulation with squeezed light for sensitivity beyond the shot-noise limit,” Opt. Lett. 13, 476–478 (1988). [CrossRef] [PubMed]
  11. S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988). [CrossRef] [PubMed]
  12. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: 32, 145–152 (1983). [CrossRef]
  13. S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999). [CrossRef]
  14. J. P. Bouyer, “Spectral stabilization of an InGaAsP semiconductor laser by injection locking,” Ann. Phys. (Paris) 18, 89–239 (1993).
  15. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 48, 2230–2234 (1993). [CrossRef] [PubMed]
  16. H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993). [CrossRef] [PubMed]
  17. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995). [CrossRef] [PubMed]
  18. S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-17, 681–686 (1981). [CrossRef]
  19. M. Romagnoli, M. D. Levenson, and G. C. Bjorklund, “Frequency-modulation-polarization spectroscopy,” Opt. Lett. 8, 635–637 (1983). [CrossRef] [PubMed]
  20. E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency-modulated spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 4, 1253–1256 (1988). [CrossRef]
  21. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985). [CrossRef]
  22. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982). [CrossRef]
  23. W. Lenth, “Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983). [CrossRef] [PubMed]
  24. S. Kasapi, S. Lathi, and Y. Yamamoto, “Sub-shot-noise, frequency-modulated, diode-laser-based source for sub-shot-noise FM spectroscopy,” Opt. Lett. 22, 478–480 (1997). [CrossRef] [PubMed]
  25. E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Phys. Rev. Lett. 68, 3020–3022 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited