OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 293–299

Inhomogeneous broadening-dependent spectral features in a four-level atomic system

W. H. Burkett, Yong-qing Li, and Min Xiao  »View Author Affiliations

JOSA B, Vol. 17, Issue 2, pp. 293-299 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



New spectral features in an inhomogeneously broadened N-type four-level atomic system are analyzed and discussed. The atomic-level scheme uses an incoherent pumping rate in place of the incoherent recycling pump. We show that the gain profile includes an extra dip that appears only in the Doppler-broadened case. The dependence of this feature on various parameters, as well as consequences for the dispersion, are explored theoretically. For certain combinations of temperature and incoherent pump rate, this gain is shown to be independent of temperature fluctuations.

© 2000 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects
(300.6210) Spectroscopy : Spectroscopy, atomic

W. H. Burkett, Yong-qing Li, and Min Xiao, "Inhomogeneous broadening-dependent spectral features in a four-level atomic system," J. Opt. Soc. Am. B 17, 293-299 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Boller, A. Imamoǧlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef] [PubMed]
  2. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995). [CrossRef] [PubMed]
  3. Y. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system of rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995). [CrossRef]
  4. S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989). [CrossRef] [PubMed]
  5. A. Immamoǧlu and S. E. Harris, “Lasers without inversion: interference of dressed lifetime-broadened states,” Opt. Lett. 14, 1344–1346 (1989). [CrossRef]
  6. Y. Zhu, M. Xiao, and Y. Zhao, “Intensity characteristics of inversionless lasers from induced atomic coherence,” Phys. Rev. A 49, 4016–4023 (1994). [CrossRef] [PubMed]
  7. E. S. Fry, X. Li, D. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S. Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993). [CrossRef] [PubMed]
  8. G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Jukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996). [CrossRef] [PubMed]
  9. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995). [CrossRef] [PubMed]
  10. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991). [CrossRef] [PubMed]
  11. O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992). [CrossRef]
  12. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996). [CrossRef]
  13. W. J. Brown, J. R. Gardner, D. J. Gauthier, and R. Vilaseca, “Amplification of laser beams counterpropagating through a potassium vapor: the effects of atomic coherence,” Phys. Rev. A 56, 3255–3261 (1997). [CrossRef]
  14. A. Karawajczyk and J. Zakrzewski, “Lasers without inversion in a Doppler-broadened medium,” Phys. Rev. A 51, 830–834 (1995). [CrossRef] [PubMed]
  15. D. Z. Wang and J. Y. Gao, “Effect of Doppler broadening on optical gain without inversion in a four-level model,” Phys. Rev. A 52, 3201–3208 (1995). [CrossRef] [PubMed]
  16. G. Vemuri and G. S. Agarwal, “Role of inhomogeneous broadening in lasing without inversion in ladder systems,” Phys. Rev. A 53, 1060–1064 (1996). [CrossRef] [PubMed]
  17. W. H. Louisell, Quantum Statistical Properties of Radiation, 2nd ed. (Wiley, New York, 1990).
  18. L. M. Narducci, M. O. Scully, C. H. Keitel, S. Y. Zhu, and M. H. Doss, “Physical origin of the gain in a four-level model of a Raman driven laser without inversion,” Opt. Commun. 86, 324–332 (1991). [CrossRef]
  19. H. M. Doss, L. M. Narducci, M. O. Scully, and J. Gao, “Theoretical analysis of a four-level laser without inversion driven by a pulsed Raman field,” Opt. Commun. 95, 57–63 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited