OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 354–365

Polarization-locked temporal vector solitons in a fiber laser: experiment

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox  »View Author Affiliations


JOSA B, Vol. 17, Issue 3, pp. 354-365 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000354


View Full Text Article

Acrobat PDF (333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally observe polarization-locked vector solitons in a passively mode-locked fiber laser. The vector soliton pulse is composed of components along both principal polarization axes of the linearly birefringent laser cavity. For certain values of birefringence and pulse energy these components propagate with a constant relative optical phase of ±π/2, and hence the pulse has a fixed elliptical polarization state. The linear birefringence of the cavity is canceled by the nonlinear birefringence created by the unequal amplitudes of the two polarization components. This dynamic equalization of the phase velocities of the components results in the stable propagation of an elliptically polarized vector soliton pulse. Under different conditions we also observe the nonlinear instability of the fast principal axis as an intracavity pulse linearly polarized along the slow axis of the cavity. We present the experimental characterization of both the polarization-locked vector soliton and the fast axis instability and discuss the nonlinear mechanism creating both phenomena.

© 2000 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3500) Lasers and laser optics : Lasers, erbium
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.7090) Ultrafast optics : Ultrafast lasers

Citation
B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, "Polarization-locked temporal vector solitons in a fiber laser: experiment," J. Opt. Soc. Am. B 17, 354-365 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-3-354


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  2. N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).
  3. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear pulses in dispersive dielectric fiber. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).
  4. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
  5. I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. QE-17, 15–22 (1981).
  6. C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol. 6, 1185–1190 (1988).
  7. C. R. Menyuk, “Nonlinear pulse-propagation in birefringent optical fiber,” IEEE J. Quantum Electron. QE-23, 174–176 (1987).
  8. C. R. Menyuk, “Stability of soliton in birefringent optical fibers. 1. Equal propagation amplitudes,” Opt. Lett. 12, 614–616 (1988).
  9. C. R. Menyuk, “Stability of soliton in birefringent optical fibers. 2. Arbitrary amplitudes,” J. Opt. Soc. Am. B 5, 392–402 (1988).
  10. M. N. Islam, C. D. Poole, and J. P. Gordon, “Soliton trapping in birefringent optical fibers,” Opt. Lett. 14, 1011–1013 (1989).
  11. D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13, 53–55 (1988).
  12. S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
  13. M. V. Tratnik and J. E. Sipe, “Bound solitary waves in a birefringent optical fiber,” Phys. Rev. A 38, 2011–2017 (1988).
  14. N. Akhmediev, A. Buryak, and J. M. Soto-Crespo, “Elliptically polarized solitons in birefringent optical fibers,” Opt. Commun. 112, 278–282 (1994).
  15. N. Akhmediev and J. M. Soto-Crespo, “Dynamics of solitonlike pulse propagation in birefringent optical fibers,” Phys. Rev. E 49, 5742–5754 (1994).
  16. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12, 434–439 (1995).
  17. J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Stationary solitonlike pulses in biefringent optical fiber,” Phys. Rev. E 51, 3547–3555 (1995).
  18. Y. Chen and J. Atai, “Femtosecond soliton pulses in birefringent optical fibers,” J. Opt. Soc. Am. B 14, 2365–2372 (1997).
  19. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in optical fiber,” Phys. Rev. Lett. 82, 3988–3991 (1999).
  20. J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: theory,” J. Opt. Soc. Am. B 17, 366–372 (2000).
  21. B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, M. Koch, and W. H. Knox, “Short cavity erbium/ytterbium fiber lasers mode-locked with a saturable Bragg reflector,” IEEE J. Sel. Top. Quantum Electron. 3, 1065–1075 (1997).
  22. H. G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett. 11, 33–35 (1986).
  23. K. J. Blow, N. J. Doran, and D. Wood, “Polarization instabilities for solitons in birefringent fibers,” Opt. Lett. 12, 202–204 (1987).
  24. Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290–3293 (1997).
  25. S. V. Manakov, “On the theory of two-dimensional self-focusing of electromagnetic waves,” Sov. Phys. JETP 38, 248–253 (1974).
  26. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
  27. L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyuk, “Resistance of solitons to the effects of polarization dispersion in optical fibers,” Opt. Lett. 14, 1219–1221 (1989).
  28. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996).
  29. J. N. Kutz, B. C. Collings, K. Bergman, S. Tsuda, S. Cundiff, W. H. Knox, P. Holmes, and M. I. Weinstein, “Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector,” J. Opt. Soc. Am. B 14, 2681–2690 (1997).
  30. N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23, 852–854 (1998).
  31. S. M. J. Kelley, “Characteristic side-band instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
  32. J. P. Gordon, “Dispersive perturbation of solitons of the nonlinear Schrödinger-equation,” J. Opt. Soc. Am. B 9, 91–97 (1992).
  33. H. C. Lefevre, “Single-mode fiber fractional wave devices and polarization controllers,” Electron. Lett. 16, 778–780 (1980).
  34. S. T. Cundiff, B. C. Collings, and W. H. Knox, “Polarization locking in an isotropic, mode-locked soliton Er/Yb fiber laser,” Opt. Express 1, 12–20 (1997); http://epubs.osa.org/opticsexpress.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited