OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 412–421

Anomalous-dispersion phase-matched second-harmonic generation in polymer waveguides: chromophores for increased efficiency and ultraviolet stability

Tehui Dai, Kenneth D. Singer, Robert J. Twieg, and Tony C. Kowalczyk  »View Author Affiliations

JOSA B, Vol. 17, Issue 3, pp. 412-421 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a series of tricyanovinylaniline chromophores for use as dopants in poled poly(methyl methacrylate) waveguides for anomalous-dispersion phase-matched second-harmonic generation. Second-harmonic-generation measurements as a function of mode index confirmed anomalous-dispersion phase-matching efficiencies as large as 245%/W cm2 over a propagation length of ∼35 µm. The waveguide coupling technique limited the interaction length. The photostability of the chromophores was measured directly and found to agree qualitatively with second-harmonic measurements over time and was found to be improved over previously reported materials. Prospects for obtaining efficient conversion by combining anomalous dispersion with Čerenkov phase matching are discussed.

© 2000 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

Tehui Dai, Kenneth D. Singer, Robert J. Twieg, and Tony C. Kowalczyk, "Anomalous-dispersion phase-matched second-harmonic generation in polymer waveguides: chromophores for increased efficiency and ultraviolet stability," J. Opt. Soc. Am. B 17, 412-421 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990). [CrossRef]
  2. H. Yamamoto, T. Sugiyama, J. Jung, T. Kinoshita, and K. Sasaki, “Čerenkov-radiation and guided-mode blue second-harmonic generation in four-layer waveguides using organic thin-film crystals,” J. Opt. Soc. Am. B 14, 1831–1837 (1997). [CrossRef]
  3. K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, and P. A. Cahill, “Guest-host polymers for nonlinear optics,” Mol. Cryst. Liq. Cryst. 189, 123–136 (1990).
  4. T. L. Penner, H. R. Motschann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994). [CrossRef]
  5. W. Wirges, S. Yilmaz, W. Brinker, W. Bauer-Gogonea, S. Bauer, M. Jager, G. I. Stegeman, M. Ahleheim, M. Stahelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett. 70, 3347–3349 (1997). [CrossRef]
  6. M. Jager, G. I. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stahelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Poling and characterization of polymer waveguide for modal dispersion phase-matched second-harmonic generation,” J. Opt. Soc. Am. B 15, 781–788 (1998). [CrossRef]
  7. O. Sugihara, T. Kinoshita, and M. Okabe, “Phase-matched second-harmonic generation in poled dye/polymer waveguide,” Appl. Opt. 30, 2957–2960 (1991). [CrossRef] [PubMed]
  8. M. Jager, G. I. Stegeman, M. C. Flipse, M. Diemeer, and G. Mohlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996). [CrossRef]
  9. X. G. Huang and M. R. Wang, “A novel quasi-phase-matching frequency doubling technique,” Opt. Commun. 150, 235–238 (1998). [CrossRef]
  10. V. Taggi, F. Michelotti, M. Bertolotti, G. Petrocco, V. Foglietti, A. Donval, E. Toussaere, and J. Zyss, “Domain inversion by pulse poling in polymer films,” Appl. Phys. Lett. 72, 2794–2796 (1998). [CrossRef]
  11. M. A. Mortazavi and G. Khanarian, “Quasi-phase-matched frequency-doubling in bulk periodic polymeric structures,” Opt. Lett. 19, 1290–1292 (1994). [CrossRef] [PubMed]
  12. N. Hashizume, T. Kondo, T. Onda, N. Ogasawara, S. Umegaki, and R. Ito, “Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides,” IEEE J. Quantum Electron. 28, 1798–1815 (1992). [CrossRef]
  13. Y. Chen, M. Kamath, A. Jain, J. Kumar, and S. Tripathy, “Cerenkov-type phase-matched second harmonic generation in polymeric channel waveguides,” Opt. Commun. 101, 231–234 (1993). [CrossRef]
  14. T. K. Lim, M. Y. Jeong, S. N. Cha, E. K. Koh, and D. Y. Han, “Cerenkov-type second harmonic generation with a nonlinear organic polymer waveguide,” J. Korean Phys. Soc. 30, 544–549 (1997).
  15. P. A. Cahill and K. D. Singer, “Chemistry of anomalous dispersion phase-matched second-harmonic generation,” ACS Symp. Ser. 455, 200–213 (1991). [CrossRef]
  16. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, “Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide,” Opt. Lett. 20, 2273–2275 (1995). [CrossRef] [PubMed]
  17. R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997). [CrossRef]
  18. D. R. Yankelevich, P. Pretre, A. Knoesen, G. Taft, M. M. Murnane, H. C. Kapteyn, and R. J. Twieg, “Molecular engineering of polymer films for amplitude and phase measurements of Ti:sapphire femtosecond pulses,” Opt. Lett. 21, 1487–1489 (1996). [CrossRef] [PubMed]
  19. J. B. Stamatoff, A. Buckley, G. Calundann, E. W. Choe, R. DeMartino, G. Khanarian, T. Leslie, G. Nelson, D. Stuetz, C. C. Teng, and H. N. Yoon, “Development of polymeric nonlinear optical materials,” in Molecular and Polymeric Optoelectronic Materials, G. Khanarian, ed., Proc. SPIE 682, 85–96 (1986). [CrossRef]
  20. H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987). [CrossRef]
  21. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, “Anomalous-dispersion enhanced Cerenkov phase-matching,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed. Proc. SPIE 2025, 332–343 (1993). [CrossRef]
  22. B. C. McKusick, R. E. Heckert, T. C. Cairns, D. D. Coffman, and H. F. Mower, “Cyanocarbon chemistry. VI. Tricyanovinylanilines,” J. Am. Chem. Soc. 80, 2806–2815 (1958). [CrossRef]
  23. K. D. Singer, M. G. Kuzyk, R. B. Comizzoli, H. E. Katz, M. L. Schilling, W. R. Holland, J. E. Sohn, and S. J. Lalama, “Electro-optic effects and second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988). [CrossRef]
  24. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970). [CrossRef]
  25. J. Jerphagnon, and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970). [CrossRef]
  26. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986). [CrossRef]
  27. A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3199 (1996). [CrossRef] [PubMed]
  28. R. B. Prime, G. Y. Chiou, and R. J. Twieg, “Evaluation of the thermal stability of some nonlinear optical chromophores,” J. Therm. Anal. 46, 1133–1150 (1996). [CrossRef]
  29. T. C. Kowalczyk, R. J. Twieg, and H. L. Lackritz, “Photochemical stability of electro-optic chromophores,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 39, 1015 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited