OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 433–439

Exciton absorption in semiconductor quantum wells driven by a strong intersubband pump field

Ansheng Liu and Cun-Zheng Ning  »View Author Affiliations

JOSA B, Vol. 17, Issue 3, pp. 433-439 (2000)

View Full Text Article

Acrobat PDF (173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical interband excitonic absorption of semiconductor quantum wells (QW’s) driven by a coherent pump field is investigated on the basis of semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW’s. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron–hole pairs in the QW structure is low, the pump field induces an Autler–Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron–hole pairs is increased, the split contrast (the ratio between the maximum and the minimum values) is decreased, because the exciton effect is suppressed at higher densities owing to the many-body screening.

© 2000 Optical Society of America

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(270.1670) Quantum optics : Coherent optical effects
(270.4180) Quantum optics : Multiphoton processes

Ansheng Liu and Cun-Zheng Ning, "Exciton absorption in semiconductor quantum wells driven by a strong intersubband pump field," J. Opt. Soc. Am. B 17, 433-439 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y. Zhao, D. Huang, and C. Wu, “Electric-field-induced quantum coherence of the intersubband transition in semiconductor quantum wells,” Opt. Lett. 19, 816–819 (1994).
  2. A. Imamoglu and R. J. Ram, “Semiconductor lasers without population inversion,” Opt. Lett. 19, 1744–1746 (1994).
  3. D. Huang, C. Wu, and Y. Zhao, “Coulomb and light-induced electronic renormalization in quantum wells for electromagnetically induced transparency and light amplification without inversion,” J. Opt. Soc. Am. B 11, 2258–2265 (1994).
  4. D. S. Lee and K. J. Malloy, “Analysis of reduced interband absorption mechanism in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-30, 85–92 (1994).
  5. Y. Zhao, D. Huang, and C. Wu, “Field-induced quantum interference in semiconductor quantum wells for lasing without inversion and electromagnetically induced transparency,” J. Nonlinear Opt. Phys. Mater. 4, 261–282 (1995).
  6. J. B. Khurgin and E. Rosencher, “Practical aspects of lasing without inversion in various media,” IEEE J. Quantum Electron. QE-32, 1882–1896 (1996).
  7. D. S. Lee and K. J. Malloy, “Gain without inversion in interband transitions of semiconductor quantum wells from a single-particle perspective,” Phys. Rev. B 53, 15749–15755 (1996).
  8. A. Liu, “Light control of optical intersubband absorption and amplification in a quantum well inside a cavity,” Phys. Rev. A 56, 3206–3212 (1997).
  9. A. Neogi, Y. Takahashi, and H. Kawaguchi, “Analysis of transient interband light modulation by ultrashort intersubband resonant light pulses in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-33, 2060–2070 (1997).
  10. A. Liu, “Self-consistent theory of optical gain with and without inversion in semiconductor quantum wells,” J. Opt. Soc. Am. B 15, 1741–1748 (1998).
  11. See, for example, K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
  12. A. Nottlemann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulse due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993).
  13. E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
  14. W. E. van der Veer, R. J. van Diest, A. Donszelmann, and H. B. van Linden van den Heuvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993).
  15. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
  16. S. Schmitt-Rink and D. S. Chemla, “Collective excitations and the dynamical Stark effect in a coherently driven exciton system,” Phys. Rev. Lett. 57, 2752–2755 (1986);S. Schmitt-Rink, D. S. Chemla, and H. Haug, “Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors,” Phys. Rev. B 37, 941–955 (1988).
  17. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd ed. (World Scientific, Singapore, 1993).
  18. W. W. Chow, S. W. Koch, and M. Sargent III, Semiconductor-Laser Physics (World Scientific, Singapore, 1995).
  19. O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 μm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
  20. J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, Jr., and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited