Quantum noise reduction in singly resonant optical devices
JOSA B, Vol. 17, Issue 3, pp. 440-451 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000440
Acrobat PDF (224 KB)
Abstract
Quantum noise in a model of singly resonant frequency doubling, including phase mismatch and driving in the harmonic mode, is analyzed. The use of a nonlinear normalization allows us to disentangle in the spectra the squeezing induced by the system dynamics from the deleterious effect of the noise coming from the various inputs. The physical insight gained permits the elaboration of general criteria to optimize noise-suppression performance. The subsequent application to the specific system here addressed reveals excellent squeezing behavior. In particular, unlimited degrees of squeezing in the harmonic mode are possible by means of an adequate phase mismatch or driving in the harmonic mode. This is in contrast with the standard phase-matched second-harmonic generation in which the squeezing is limited to 1/9. The applicability of the model, as well as possible experimental implementations, is extensively discussed.
© 2000 Optical Society of America
OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.6570) Quantum optics : Squeezed states
Citation
C. Cabrillo, J. L. Roldán, and P. Garíca-Fernández, "Quantum noise reduction in singly resonant optical devices," J. Opt. Soc. Am. B 17, 440-451 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-3-440
Sort: Year | Journal | Reset
References
- S. F. Pereira, X. Min, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38, 4931–4934 (1988).
- A. Sizmann, R. J. Horowicz, and G. Wagner, “Observation of amplitude squeezing of the up-converted mode in second harmonic generation,” Opt. Commun. 80, 138–142 (1990).
- P. Kurz, R. Paschotta, K. Fiedler, and J. Mlynek, “Bright squeezed light by second-harmonic generation in a monolithic resonator,” Europhys. Lett. 24, 449–454 (1993).
- R. Paschotta, M. Collett, and P. Kurz, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
- T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor, “Squeezed light from second-harmonic generation: experiment versus theory,” Opt. Lett. 20, 1316–1318 (1995).
- H. Tsuchida, “Generation of amplitude squeezed light at 431 nm from a singly resonant frequency doubler,” Opt. Lett. 20, 2240–2242 (1995).
- S. Youn, S.-K. Choi, P. Kumar, and R.-D. Li, “Observation of sub-Poissonian light in traveling-wave second-harmonic generation,” Opt. Lett. 21, 1597–1599 (1996).
- E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum state limit,” Appl. Phys. B 55, 279–290 (1992).
- G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, “Squeezed vacuum from a monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2304–2309 (1995).
- K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, “Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier,” Opt. Lett. 21, 1396–1398 (1996).
- G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).
- K. Sundar, “Highly amplitude squeezed states of the radiation field,” Phys. Rev. Lett. 75, 2116–2119 (1995).
- M. A. M. Marte, “Sub-poissonian twin beams via competing nonlinearities,” Phys. Rev. Lett. 76, 4815–4818 (1995).
- M. A. M. Marte, “Nonlinear dynamics and quantum noise for competing χ^{(2)} nonlinearities,” J. Opt. Soc. Am. B 12, 2296–2303 (1995).
- C. Cabrillo, J. L. Roldán, and P. García-Fernández, “Squeezing enhancement by competing nonlinearities: almost perfect squeezing without instabilities,” Phys. Rev. A 56, 5131–5134 (1997).
- K. V. Kheruntsyan, G. Yu. Kryuchkyan, and K. G. Petrosyan, “Controlling instability and squeezing from a cascaded frequency doubler,” Phys. Rev. A 57, 535–547 (1998).
- P. Tombesi and H. P. Yuen, “Enhanced squeezing in an optically bistable 2-photon medium,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984).
- P. Tombesi, “Oversqueezing via 4-order interaction,” in Quantum Optics IV, J. D. Harvey and D. F. Walls, eds. (Springer, New York, 1986).
- P. García-Fernández, P. Colet, R. Toral, M. San Miguel, and F. J. Bermejo, “Squeezing resulting from a fourth-order interaction in a degenerate parametric amplifier with absorption losses,” Phys. Rev. A 43, 4923–4929 (1991).
- C. Cabrillo, F. J. Bermejo, P. García-Fernández, R. Toral, P. Colet, and M. San Miguel, “Transient behavior of a parametric amplifier with an added fourth-order interaction,” Phys. Rev. A 45, 3216–3223 (1992).
- C. Cabrillo and F. J. Bermejo, “Control of the squeezing spectrum by means of a fourth-order interaction,” Phys. Lett. A 170, 300–304 (1992).
- C. Cabrillo and F. J. Bermejo, “Large quadrature squeezing at high intensities,” Phys. Rev. A 48, 2433–2436 (1993).
- G. Yu. Kryuchkyan and K. V. Kheruntsyan, “Exact quantum theory of a parametrically driven dissipative anharmonic oscillator,” Opt. Commun. 127, 230–236 (1996).
- K. V. Kheruntsyan, D. S. Krahmer, and K. G. Petrossian, “Wigner function for a generalized model of parametric oscillator: phase-space tristability, competition and nonclassical effects,” Opt. Commun. 139, 157–164 (1997).
- A. G. White, J. Mlynek, and S. Schiller, “Cascaded second-order nonlinearity in an optical cavity,” Europhys. Lett. 35, 425–430 (1996).
- M. J. Collett and R. B. Levien, “Two-photon-loss model of intracavity second-harmonic generation,” Phys. Rev. A 43, 5068–5072 (1991).
- S. Schiller, S. Kohler, R. Paschotta, and J. Mlynek, “Squeezing and quantum nondemolition measurements with an optical parametric amplifier,” Appl. Phys. B 60, S77–S88 (1995).
- M. J. Collet and C. W. Gardiner, “Squeezing of intracavity and travelling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984).
- C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991), Chap. 5.3.
- S. Reynaud, C. Fabre, and E. Giacobino, “Photon noise reduction by passive optical bistable systems,” Phys. Rev. A 40, 1440–1446 (1989).
- C. Fabre, E. Giacobino, and A. Heidmann, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2, 159–187 (1990).
- K. Kasai, G. Jiangrui, and C. Fabre, “Observation of squeezing using cascaded nonlinearity,” Europhys. Lett. 40, 25–30 (1997).
- A. G. White, M. S. Taubman, and H.-A. Bachor, “Experimental test of modular noise propagation theory for quantum optics,” Phys. Rev. A 54, 3400–3404 (1996).
- C. Sirtori, F. Capasso, and D. L. Sivco, “Resonant Stark tuning of second-order susceptibility in coupled quantum wells,” Appl. Phys. Lett. 60, 151–153 (1992).
- J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable Fano interference in intersubband absorption,” Opt. Lett. 21, 985–987 (1996).
- H. Schmidt, K. L. Campman, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997).
- J. Faist, F. Capasso, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997).
- H. Schmidt and A. Imamoglu, “Nonlinear optical devices based on a transparency in semiconductors intersubband transitions,” Opt. Commun. 131, 333–338 (1996).
- S. Schiller, G. Breitenbach, and J. Mlynek, “Subharmonic-pumped continuous-wave parametric oscillator,” Appl. Phys. Lett. 68, 3374–3376 (1996).
- S. Schiller, R. Bruckmeier, and A. G. White, “Classical and quantum properties of the subharmonic pumped parametric oscillator,” Opt. Commun. 138, 158–171 (1997).
- J. L. Sorensen and E. S. Polzik, “Internally pumped subthreshold OPO,” Appl. Phys. B 66, 711–718 (1998).
- A. G. White, P. K. Lam, and H.-A. Bachor, “Classical and quantum signatures of competing χ^{(2)} nonlinearities,” Phys. Rev. A 55, 4511–4515 (1997).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.