OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 452–461

Influence of noise on the characterization of materials by terahertz time-domain spectroscopy

Lionel Duvillaret, Frédéric Garet, and Jean-Louis Coutaz  »View Author Affiliations

JOSA B, Vol. 17, Issue 3, pp. 452-461 (2000)

View Full Text Article

Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the contributions of various error sources to uncertainty in the far-infrared optical constants (refractive index and absorption coefficient) measured by terahertz (THz) time-domain spectroscopy. We focus our study on the influence of noise. This noise study is made with a thick slab of transparent material for which the THz transmitted signal exhibits temporal echoes owing to reflections in the sample. Extracting data from each of these time-windowed echoes allows us to characterize the noise sources. In THz time-domain spectroscopy experiments in which photoswitches are used as antennae, the transmitting antenna constitutes the principal noise source. The uncertainty in the far-infrared optical constants can be strongly reduced when the extraction is performed with THz echoes that have encountered many reflections in the sample.

© 2000 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(300.6240) Spectroscopy : Spectroscopy, coherent transient

Lionel Duvillaret, Frédéric Garet, and Jean-Louis Coutaz, "Influence of noise on the characterization of materials by terahertz time-domain spectroscopy," J. Opt. Soc. Am. B 17, 452-461 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988); Ch. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1483 (1988).
  2. J. Houghton and S. D. Smith, Infrared Physics (Oxford U. Press, London, 1966).
  3. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
  4. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
  5. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
  6. M. C. Nuss, P. M. Mankiewich, M. L. O’Malley, E. H. Westerwick, and P. B. Littlewood, “Dynamic conductivity and ‘coherence peak’ in YBa2Cu3O7 superconductors,” Phys. Rev. Lett. 66, 3305–3308 (1991).
  7. S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, Ch. Ludwig, F. F. Balakirev, H.-U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature superconductors investigated with coherent terahertz spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
  8. J. F. Whitaker, F. Gao, and Y. Liu, “Terahertz-bandwidth pulses for coherent time-domain spectroscopy,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, R. C. Eckardt, H. Everitt, D. D. Lowenthal, and N. Peyghambarian, eds., Proc. SPIE 2145, 168–177 (1994).
  9. J. E. Pedersen and S. R. Keiding, “THz time-domain spectroscopy of nonpolar liquids,” IEEE J. Quantum Electron. 28, 2518–2522 (1992); S. R. Keiding, “Dipole correlation functions in liquid benzenes measured with THz time domain spectroscopy,” J. Chem. Phys. A 101, 5250–5254 (1997).
  10. Y. Pastol, G. Arjavalingam, G. V. Kopcsay, and J.-M. Halbout, “Dielectric properties of uniaxial crystals measured with optoelectronically generated microwave transient radiation,” Appl. Phys. Lett. 55, 2277–2279 (1989).
  11. Y. Pastol, G. Arjavalingam, J.-M. Halbout, and G. V. Kopcsay, “Absorption and dispersion of low-loss dielectrics measured with microwave transient radiation,” Electron. Lett. 25, 523–524 (1989).
  12. R. A. Cheville and D. Grischkowsky, “Far-infrared terahertz time-domain spectroscopy of flames,” Opt. Lett. 20, 1646–1648 (1995).
  13. H. Harde, N. Katzenellenbogen, and D. Grischkowsky, “Terahertz coherent transients from methyl chloride vapor,” J. Opt. Soc. Am. B 11, 1018–1030 (1994).
  14. S. Labbe-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J.-L. Coutaz, “Far-infrared dielectric constant of porous sili-con layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys. 83, 6007–6010 (1998).
  15. B. I. Greene, J. F. Federici, D. R. Dykaar, A. F. J. Levi, and L. Pfeiffer, “Picosecond pump and probe spectroscopy utilizing freely propagating terahertz radiation,” Opt. Lett. 16, 48–49 (1991).
  16. S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low temperature grown GaAs observed via terahertz spectroscopy,” in Digest of Topical Meeting on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1996), paper UTuB5-1, pp. 146–148.
  17. P. U. Jepsen and S. R. Keiding, “Radiation patterns from lens-coupled terahertz antennas,” Opt. Lett. 20, 807–809 (1995).
  18. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
  19. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38, 409–415 (1999).
  20. H. Sakai, G. A. Vanasse, and M. L. Forman, “Spectral recovery in Fourier spectroscopy,” J. Opt. Soc. Am. 58, 84 (1968).
  21. P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
  22. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in THz time domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).
  23. See, for example, E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985). Nevertheless, this is not the case for highly absorbing materials, such as superconducting thin films, for which another simplification holds.8 The general case does not lead to analytical expressions but can be numerically treated by a reliable and fast method.22
  24. Indeed, the Johnson noise is linked to the photoswitch resistance, which varies under laser illumination. Nevertheless, because of the slight decrease of the mean photoswitch resistance induced by the laser illumination, the Johnson noise is rather independent of the signal. Moreover, the shot noise is proportional to the square root of the signal amplitude and not to its amplitude.
  25. Both noise analysis and uncertainty reduction procedures have been applied with time-domain reflectometry equipment in our laboratory for the characterization of guided structures in the microwave domain. First results confirm the possibility of extending these two methods to another area of time-domain characterization.
  26. M. L. Boas, Mathematical Methods in the Physical Sciences (Wiley, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited