OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 514–518

Importance of prechirping in constant-dispersion fiber links with a large amplifier spacing

Zhi M. Liao, C. J. McKinstrie, and Govind P. Agrawal  »View Author Affiliations


JOSA B, Vol. 17, Issue 4, pp. 514-518 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000514


View Full Text Article

Enhanced HTML    Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use the variational method to find the optimum launch conditions that can sustain path-averaged solitons in a periodically amplified, constant-dispersion, optical communication system even when amplifier spacing is comparable to or larger than the dispersion length. We determine the amount of prechirping and the initial peak power required and show that both the pulse width and the chirp recover their initial values at each amplifier. The prechirped solitons are different from the standard solitons in constant dispersion since their width and chirp are allowed to vary over each amplifier section. This feature results in an interesting regime in which amplifier spacing can exceed the dispersion length. Numerical solutions of the nonlinear Schrödinger equation show that the use of prechirped solitons improves stability in comparison with guiding-center solitons in constant-dispersion fiber links.

© 2000 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

Citation
Zhi M. Liao, C. J. McKinstrie, and Govind P. Agrawal, "Importance of prechirping in constant-dispersion fiber links with a large amplifier spacing," J. Opt. Soc. Am. B 17, 514-518 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-4-514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).
  2. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, UK, 1995).
  3. A. Hasegawa and Y. Kodama, “Guiding-center soliton in optical fibers,” Opt. Lett. 15, 1443–1445 (1990); “Guiding-center soliton,” Phys. Rev. Lett. 66, 161–164 (1991). [CrossRef] [PubMed]
  4. L. F. Mollenauer, S. G. Evangelides, and H. A. Haus, “Long-distance soliton propagation using lumped amplifiers and dispersion shifted fiber,” J. Lightwave Technol. 9, 194–196 (1991). [CrossRef]
  5. K. J. Blow and N. J. Doran, “Average soliton dynamics and the operation of soliton systems with lumped amplifiers,” IEEE Photonics Technol. Lett. 3, 369–371 (1991). [CrossRef]
  6. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992). [CrossRef]
  7. N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992). [CrossRef]
  8. J. P. Gordan, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9, 91–97 (1992). [CrossRef]
  9. N. J. Smith and N. J. Doran, “Picosecond soliton transmission using concatenated nonlinear optical loop-mirror intensity filters,” J. Opt. Soc. Am. B 12, 1117–1125 (1995). [CrossRef]
  10. M. Matsumoto, H. Ikeda, T. Uda, and A. Hasegawa, “Stable soliton transmission in the system with nonlinear gain,” J. Lightwave Technol. 13, 658–665 (1995). [CrossRef]
  11. W. Forysiak, N. J. Doran, F. M. Knox, and K. J. Blow, “Average soliton dynamics in strongly perturbed systems,” Opt. Commun. 117, 65–70 (1995). [CrossRef]
  12. R. J. Essiambre and G. P. Agrawal, “Soliton communication beyond the average-soliton regime,” J. Opt. Soc. Am. B 12, 2420–2425 (1995). [CrossRef]
  13. Z. M. Liao and G. P. Agrawal, “High-bit-rate soliton transmission using distributed amplification and dispersion management,” IEEE Photonics Technol. Lett. 11, 818–820 (1999). [CrossRef]
  14. T. Okamawari, Y. Ueda, A. Maruta, Y. Kodama, and A. Hasegawa, “Interaction between guiding centre solitons in a periodically compensated optical transmission line,” Electron. Lett. 33, 1063–1065 (1997). [CrossRef]
  15. Y. Kodama and A. Maruta, “Optimal design of dispersion management for a soliton-wavelength-division-multiplexed system,” Opt. Lett. 22, 1692–1694 (1997). [CrossRef]
  16. I. Morita, M. Suzuki, N. Edagawa, K. Tanaka, S. Yamamoto, and S. Akiba, “Performance improvement by initial phase modulation in 20 Gbit/s soliton-based RZ transmission with periodic dispersion compensation,” Electron. Lett. 33, 1021–1022 (1997). [CrossRef]
  17. H. Sugahara, T. Inoue, A. Maruta, and Y. Kodama, “Optimal dispersion management for wavelength-division-multiplexed RZ optical pulse transmission,” Electron. Lett. 34, 902–904 (1998). [CrossRef]
  18. T. Georges and B. Charbonnier, “Reduction of the dispersive wave in periodically amplified links with initially chirped solitons,” IEEE Photonics Technol. Lett. 9, 127–129 (1997). [CrossRef]
  19. F. Favre, D. Guen, and T. Georges, “Experimental evidence of pseudoperiodical soliton propagation in dispersion-managed links,” J. Lightwave Technol. 17, 1032–1036 (1999). [CrossRef]
  20. D. Anderson, “Variational approach to nonlinear pulse propagation in optical fibers,” Phys. Rev. A 27, 3135–3145 (1983). [CrossRef]
  21. W. L. Kath and N. F. Smyth, “Soliton evolution and radiation loss for the nonlinear Schrödinger equation,” Phys. Rev. E 51, 1484–1492 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited