OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 593–599

Surface-plasmon–polariton excitation of optical microcavities and second-harmonic emission

Klaus M. Engenhardt and Stephen Gregory  »View Author Affiliations

JOSA B, Vol. 17, Issue 4, pp. 593-599 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have created microscopic Fabry–Perot optical resonator cavities between the flattened end of a tunneling microscope tip and a semitransparent metal film. Power is transferred to cavity modes from a laser beam by means of surface-plasmon–polariton generation and subsequent radiative decay. We compare the dependence of the axial emission from these modes on cavity length and on the angle of incidence with the predictions of a stratified-medium model. The mode structure has a finesse that approaches the theoretical limit. At high incident power, second-harmonic radiation produced by weakly localized surface-plasmon–polaritons is also coupled into the cavity and detected in axial emission.

© 2000 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.2620) Nonlinear optics : Harmonic generation and mixing
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons

Klaus M. Engenhardt and Stephen Gregory, "Surface-plasmon–polariton excitation of optical microcavities and second-harmonic emission," J. Opt. Soc. Am. B 17, 593-599 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980) Chaps. 1 and 13.
  2. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [CrossRef]
  3. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
  4. Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989). [CrossRef]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  6. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989). [CrossRef]
  7. H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997). [CrossRef]
  8. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991). [CrossRef] [PubMed]
  9. F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R. Loudon, “Spontaneous and stimulated emission in the thresholdless microlaser,” J. Opt. Soc. Am. B 10, 360–380 (1993). [CrossRef]
  10. F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987). [CrossRef] [PubMed]
  11. C. Im, K. M. Engenhardt, and S. Gregory, “Light-induced transient currents from molecular films in a tunneling microscope junction,” Phys. Rev. B 59, 3153–3159 (1999). [CrossRef]
  12. H. Raether, Surface Plasmons, Vol. 3 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  13. J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25, 2297–2300 (1982). [CrossRef]
  14. A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985). [CrossRef]
  15. K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985). [CrossRef] [PubMed]
  16. E. R. Mendez and K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987). [CrossRef]
  17. S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996). [CrossRef]
  18. N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991). [CrossRef]
  19. D. W. Pohl, U. Ch. Fischer, and U. Dürig, “Scanning near-field optical microscopy (SNOM): basic principles and some recent developments,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE 897, 84–90 (1988). [CrossRef]
  20. U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989). [CrossRef] [PubMed]
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  22. P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993). [CrossRef]
  23. D.-L. Hornauer, “Anregung und Streuung von geführten Wellen an Schichtsystemen mit statistisch rauhen Grenzflächen im sichtbaren Spektralbereich,” Ph.D. dissertion (University of Hamburg, Hamburg, Germany, 1979).
  24. G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1297–1311 (1977). [CrossRef]
  25. K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988). [CrossRef]
  26. C. H. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981). [CrossRef]
  27. A. R. McGurn, T. A. Leskova, and V. M. Agranovich, “Weak-localization effects in the generation of second harmonics of light at a randomly rough vacuum-metal grating,” Phys. Rev. B 44, 11, 441–11, 456 (1991). [CrossRef]
  28. O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992). [CrossRef]
  29. S. I. Bozhevolnyi and K. Pedersen, “Second harmonic generation due to surface plasmon localization,” Surf. Sci. 377–379, 384–387 (1997). [CrossRef]
  30. L. Kuang and H. J. Simon, “Diffusely scattered second harmonic generation from a silver film due to surface plasmons,” Phys. Lett. A 197, 257–261 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited