OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 600–606

Photonic bandgap optimization in inverted fcc photonic crystals

Marcel Doosje, Bernhard J. Hoenders, and Jasper Knoester  »View Author Affiliations


JOSA B, Vol. 17, Issue 4, pp. 600-606 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000600


View Full Text Article

Acrobat PDF (296 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present results of photonic band-structure calculations for inverted photonic crystal structures. We consider a structure of air spheres in a dielectric background, arranged in an fcc lattice, with a cylindrical tunnel connecting each pair of neighboring spheres. We derive (semi)analytical expressions for the Fourier coefficients of the dielectric susceptibility, which are used as input in a standard plane-wave expansion method. We optimize the width of the photonic bandgap by applying a gradient search method and varying two geometrical parameters in the system: the ratios R/a and Rc/R, where a is the lattice constant, R is the sphere radius, and Rc is the cylinder radius. It follows from our calculations that the maximal gap width in this type of photonic-crystal structure with air spheres and cylinders in silicon is Δω/ω0=9.59%.

© 2000 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics

Citation
Marcel Doosje, Bernhard J. Hoenders, and Jasper Knoester, "Photonic bandgap optimization in inverted fcc photonic crystals," J. Opt. Soc. Am. B 17, 600-606 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-4-600


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun. 102, 165–173 (1997).
  3. V. P. Bykov, “Spontaneous emission from a medium with a band spectrum,” Sov. J. Quantum Electron. 4, 861–871 (1975).
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  5. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
  6. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
  7. E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994).
  8. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
  9. J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett. 24, 49–51 (1999).
  10. J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
  11. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho, “Optical photonic crystals fabricated from colloidal systems,” Appl. Phys. Lett. 74, 3933–3935 (1999).
  12. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
  13. A. van Blaaderen, “Opals in a new light,” Science 282, 887–888 (1998).
  14. B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spherical voids,” Science 281, 538–540 (1998).
  15. A. Imhof and D. J. Pine, “Ordered macroporous materials by emulsion templating,” Nature 389, 948–951 (1997).
  16. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Porous silica via colloidal crystallization,” Nature 389, 447–448 (1997).
  17. H. Míguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez, “Evidence of fcc crystallization of SiO2 nanospheres,” Langmuir 13, 6009–6011 (1997).
  18. V. N. Astratov, Y. A. Vlasov, O. Z. Karimov, A. A. Kaplyanskii, Y. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev, “Photonic band gaps in 3D ordered fcc silica matrices,” Phys. Lett. A 222, 349–353 (1996).
  19. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
  20. S. G. Romanov, A. V. Fokin, and R. M. de la Rue, “Stop-band structure in complementary three-dimensional opal-based photonic crystals,” J. Phys. Condens. Matter 11, 3593–3600 (1999).
  21. M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broadband reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
  22. H. Míguez, F. Meseguer, C. López, Á. Blanco, J. S. Moya, J. Requena, A. Mifsud, and V. Fornés, “Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering,” Adv. Mater. 10, 480–483 (1998).
  23. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
  24. E. N. Economou and M. M. Sigalas, “Classical wave propagation in periodic structures: Cermet versus network topology,” Phys. Rev. B 48, 13, 434–13, 438 (1993).
  25. R. Biswas, M. M. Sigalas, G. Subramania, and K. M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
  26. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
  27. H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane wave method,” Phys. Rev. B 45, 13, 962–13, 972 (1992).
  28. S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Photonic band gaps in periodic dielectric structures: the scalar-wave approximation,” Phys. Rev. B 46, 10, 650–10, 656 (1992).
  29. K. W. K. Shung and Y. C. Tsai, “Surface effects and band measurements in photonic crystals,” Phys. Rev. B 48, 11, 265–11, 269 (1993).
  30. P. R. Villeneuve and M. Piché, “Photonic bandgaps: what is the best numerical representation of periodic structures?” J. Mod. Opt. 41, 241–256 (1994).
  31. K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
  32. M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995), Vol. II, Chap. 33.
  33. H. J. Monkhorst and J. D. Park, “Special points of Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).
  34. C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
  35. W. Kohn and N. Rostoker, “Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium,” Phys. Rev. 94, 1111–1120 (1954).
  36. A. Moroz, “Inward and outward integral equations and the KKR method for photons,” J. Phys. Condens. Matter 6, 171–182 (1994).
  37. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter 11, 997–1008 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited