OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 629–633

Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab

Reginald K. Lee, Oskar Painter, Benjamin Kitzke, Axel Scherer, and Amnon Yariv  »View Author Affiliations


JOSA B, Vol. 17, Issue 4, pp. 629-633 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000629


View Full Text Article

Acrobat PDF (560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A single isolated defect within a two-dimensional photonic crystal semiconductor slab is shown to provide a lithographically tunable doubly degenerate emission resonance within the photonic bandgap, with a measured quality factor (Q) of 80–150, depending on the cavity geometry. Spontaneous emission outside the cavity linewidth is below the measurement limit of our system. Stimulated emission from this photonic crystal defect cavity is demonstrated at room temperature under pulsed optical pumping in spite of the large surface-to-volume ratio of this cavity and the associated large nonradiative surface recombination rate.

© 2000 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(300.2140) Spectroscopy : Emission

Citation
Reginald K. Lee, Oskar Painter, Benjamin Kitzke, Axel Scherer, and Amnon Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," J. Opt. Soc. Am. B 17, 629-633 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-4-629


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  4. S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
  5. E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
  6. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP–InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
  7. S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).
  8. D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
  9. R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
  10. C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
  11. R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
  12. N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.
  13. T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
  14. R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).
  15. P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).
  16. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
  17. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
  18. J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
  19. See, for example, A. Yariv, Quantum Electronics (Wiley, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited