OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 5 — May. 1, 2000
  • pp: 697–704

Asymmetric interdigitated metal-semiconductor-metal contacts for improved adaptive photoinduced-electromotive-force detectors

J. A. Coy, D. D. Nolte, G. J. Dunning, D. M. Pepper, B. Pouet, G. D. Bacher, and M. B. Klein  »View Author Affiliations


JOSA B, Vol. 17, Issue 5, pp. 697-704 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000697


View Full Text Article

Acrobat PDF (250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of interdigitated metal-semiconductor-metal contacts on semi-insulating GaAs enhances the responsivity of photoinduced-electromotive-force (photo-EMF) adaptive detectors by reducing the carrier transit time between electrical contacts. The unique polar character of the photo-EMF effect prevents the use of conventional interdigitated contact designs. For photo-EMF enhancement, the photoconductivity must be suppressed in every odd electrode pair. This is achieved through proton implantation to reduce the photocarrier lifetimes. The need to minimize the amount of area occupied by the back-action pairs while maintaining maximum collecting area between the active pairs is the source of the asymmetry. We present theoretical analysis of the scaling of the responsivity with the number of pairs. The theory is verified with experimental asymmetric interdigitated contact devices with 1, 2, 4, 8, 16, and 32 pairs of electrodes. The relative enhancement in responsivity is approximately equal to the number of pairs. The enhanced photo-EMF detectors have potential application to adaptive laser-based ultrasound detection.

© 2000 Optical Society of America

OCIS Codes
(090.1000) Holography : Aberration compensation
(110.7170) Imaging systems : Ultrasound
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(190.5330) Nonlinear optics : Photorefractive optics

Citation
J. A. Coy, D. D. Nolte, G. J. Dunning, D. M. Pepper, B. Pouet, G. D. Bacher, and M. B. Klein, "Asymmetric interdigitated metal-semiconductor-metal contacts for improved adaptive photoinduced-electromotive-force detectors," J. Opt. Soc. Am. B 17, 697-704 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-5-697


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying EMF in a nonuniformly illuminated semiconductor,” Sov. Tech. Phys. Lett. 12, 916–920 (1986).
  2. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
  3. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
  4. S. I. Stepanov, “Sensitivity of non-steady-state photoelectromotive force-based adaptive photodetectors and characterization techniques,” Appl. Opt. 33, 915–920 (1994).
  5. I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Holographic currents and the non-steady-state photoelectromotive force in cubic photorefractive crystals,” J. Opt. Soc. Am. B 9, 173–176 (1992).
  6. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990).
  7. M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
  8. Y. Matsuda, H. Nakano, and S. Nagai, “Optical detection of transient Lamb waves on rough surfaces by phase-conjugate method,” Jpn. J. Appl. Phys., Part 2 31, L987–L989 (1992).
  9. P. Delaye, A. Blouin, D. Drolet, and J.-P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
  10. D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high bandwidth, auto-compensating, laser-based ultrasound detectors,” Mater. Sci. Forum 210–213, 425–432 (1996).
  11. I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991).
  12. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
  13. A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994).
  14. B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in pho-torefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
  15. P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
  16. I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
  17. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
  18. C.-C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
  19. C.-C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
  20. J.-P. Monchalin, “Optical detection of ultrasound,” Rev. Prog. Quant. Nondestr. Eval. 12, 495–506 (1993).
  21. D. M. Pepper, G. J. Dunning, P. V. Mitchell, S. W. McCahon, M. B. Klein, and T. R. O. O’Meara, “Materials inspection and process control using compensated laser ultrasound evaluation (CLUE): demonstration of a low-cost laser ultrasonic sensor,” in Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, L. R. Migliore, C. Roychoudhuri, R. D. Schaeffer, J. Mazumder, and J. J. Dubowski, eds., Proc. SPIE 2703, 91–102 (1996).
  22. S. Stepanov, N. Korneev, S. Mansurova, D. Mayorga Cruz, M. Krasin’kova, and M. B. Klein, “Longitudinal configuration of photo-emf signal detection with tilted orientation of the interference fringes,” presented at the Conference on Lasers and Electro-Optics (CLEO’98), San Francisco, Calif., May 3–7, 1998.
  23. W. Roth, H. Schumacher, J. Kluge, H. J. Geelen, and H. Beneking, “The DSI diode—a fast large area optoelectronic detector,” IEEE Trans. Electron Devices 32, 1034–1036 (1985).
  24. M. Ito and O. Wada, “Low dark current GaAs metal-semiconductor-metal photodiodes using WS:/snbx contacts,” IEEE J. Quantum Electron. QE-22, 1073–1077 (1986).
  25. J. H. Burroughes, “H_MESFET compatible GaAs/AlGaAs MSM photodetector,” IEEE Photon. Technol. Lett. 3, 660–662 (1991).
  26. D. D. Nolte, J. A. Coy, G. J. Dunning, D. M. Pepper, M. P. Chiao, G. D. Bacher, and M. B. Klein, “Enhanced responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts,” Opt. Lett. 24, 342–344 (1999).
  27. J. C. Dyment, J. C. North, and L. A. D’Asaro, “Optical and electrical properties of proton-bombarded p-type GaAs,” J. Appl. Phys. 44, 207–213 (1973).
  28. B. R. Pruniaux, J. C. North, and G. L. Miller, “Compensation of n-type GaAs by proton bombardment,” presented at the Conference on Ion Implantation in Semiconductors, Garmisch-Partenkirchen, Denmark, May 24–28, 1971.
  29. B. Schwartz, L. A. Koszi, P. J. Anthony, and R. L. Hartman, “Thermal annealing of proton-bombarded GaAs and AlGaAs,” J. Electrochem. Soc. 131, 1703–1707 (1984).
  30. Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
  31. M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
  32. M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann, and J. Schneider, “Subpicosecond carrier lifetimes in radiation-damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
  33. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
  34. G. J. Dunning, D. M. Pepper, M. P. Chiao, P. V. Mitchell, and T. R. O’Meara, “Optimizing the photo-induced emf response for high-speed compensation and broadband laser-based ultrasonic remote sensing,” in Nondestructive Characterization of Materials, R. Green, Jr., ed. (Plenum, New York, 1998), Vol. VIII, pp. 21–26.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited