OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 5 — May. 1, 2000
  • pp: 713–722

Characterization of a tunable, single-beam ponderomotive-optical trap

J. L. Chaloupka and D. D. Meyerhofer  »View Author Affiliations


JOSA B, Vol. 17, Issue 5, pp. 713-722 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000713


View Full Text Article

Acrobat PDF (681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generation and numerical and optical characterization of a single-beam, ponderomotive-optical trap are discussed. A novel segmented wave-plate technique is described, and experimental results of the trap formation are presented. Several methods to tune the traps are discussed, including techniques to realize a bright trap for dark-seeking electrons. The effects of non-Gaussian incident beams and beams with phase aberrations on trap formation are also described.

© 2000 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(020.7010) Atomic and molecular physics : Laser trapping
(140.3370) Lasers and laser optics : Laser gyroscopes
(140.7010) Lasers and laser optics : Laser trapping
(350.5340) Other areas of optics : Photothermal effects

Citation
J. L. Chaloupka and D. D. Meyerhofer, "Characterization of a tunable, single-beam ponderomotive-optical trap," J. Opt. Soc. Am. B 17, 713-722 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-5-713


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. A. H. Boot and R. B. R.-S. Harvie, “Charged particles in a non-uniform radio-frequency field,” Nature 180, 1187 (1957).
  2. E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738–2753 (1970).
  3. J. H. Eberly, “Interaction of very intense light with free electrons,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1969), Vol. 7, pp. 359–415.
  4. V. Gapanov and M. A. Miller, “Potential wells for charged particles in a high-frequency electromagnetic field,” J. Exp. Theor. Phys. 34, 242–243 (1958).
  5. N. J. Phillips and J. J. Sanderson, “Trapping of electrons in a spatially inhomogeneous laser beam,” Phys. Lett. 21, 533–534 (1966).
  6. U. Mohideen, H. W. K. Tom, R. R. Freeman, J. Bokor, and P. H. Bucksbaum, “Interaction of free electrons with an intense focused laser pulse in Gaussian and conical axicon geometries,” J. Opt. Soc. Am. B 9, 2190–2195 (1992).
  7. C. I. Moore, “Confinement of electrons to the center of a laser focus via the ponderomotive potential,” J. Mod. Opt. 39, 2171–2178 (1992).
  8. J. L. Chaloupka, Y. Fisher, T. J. Kessler, and D. D. Meyerhofer, “Single-beam, ponderomotive-optical trap for free electrons and neutral atoms,” Opt. Lett. 22, 1021–1023 (1997).
  9. H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, “Raman cooling of atoms in an optical dipole trap,” Phys. Rev. Lett. 76, 2658–2661 (1996).
  10. P. Rudy, R. Ejnisman, A. Rahman, S. Lee, and N. P. Bigelow, “All-optical dynamical dark trap for neutral atoms,” submitted to Phys. Rev. Lett.
  11. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
  12. J. Yin and Y. Zhu, “Dark-hollow-beam gravito-optical atom trap above an apex of a hollow optical fibre,” Opt. Commun. 152, 421–428 (1998).
  13. Yu. B. Ovchinnikov, I. Manek, A. I. Sidorov, G. Wasik, and R. Grimm, “Gravito-optical atom trap based on a conical hollow beam,” Europhys. Lett. 43, 510–515 (1998).
  14. R. Ozeri, L. Khayovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
  15. J. L. Chaloupka and D. D. Meyerhofer, “Observation of electron trapping in an intense laser beam,” Phys. Rev. Lett. 83, 4538–4541 (1999).
  16. P. W. Milonni and J. H. Eberly, “Laser resonators,” in Lasers (Wiley, New York, 1975), pp. 484–490.
  17. Ref. 16, pp. 511–514.
  18. L. W. Casperson, “Spatial modulation of Gaussian laser beams,” Opt. Quantum Electron. 10, 483–493 (1978).
  19. J. Ojeda-Castañeda and G. Ramírez, “Zone plates for zero axial irradiance,” Opt. Lett. 18, 87–89 (1993).
  20. S. B. Viñas, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Zone plates with black focal spots,” Appl. Opt. 31, 192–198 (1992).
  21. G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun. 127, 183–188 (1996).
  22. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
  23. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
  24. Y.-H. Chuang, D. D. Meyerhofer, S. Augst, H. Chen, J. Peatross, and S. Uchida, “Suppression of the pedestal in a chirped-pulse-amplification laser,” J. Opt. Soc. Am. B 8, 1226–1235 (1991).
  25. Vachaspati, “Harmonics in the scattering of light by free electrons,” Phys. Rev. 128, 664–666 (1962).
  26. S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Experimental observation of relativistic nonlinear Thomson scattering,” Nature 396, 653–655 (1998).
  27. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
  28. R. S. Longhurst, Geometrical and Physical Optics (Wiley, New York, 1967), pp. 365–366.
  29. C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, “Observation of the transition from Thomson to Compton scattering in multiphoton interactions with low-energy electrons,” Phys. Rev. Lett. 74, 2439–2442 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited