OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 5 — May. 1, 2000
  • pp: 758–763

Intensity-dependent refractive index in a nonresonant cw Raman laser that is due to thermal heating of the Raman-active gas

Peter A. Roos, Jay K. Brasseur, and John L. Carlsten  »View Author Affiliations


JOSA B, Vol. 17, Issue 5, pp. 758-763 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000758


View Full Text Article

Acrobat PDF (151 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The refractive index of H2 is shown to decrease linearly as a function of Stokes power and, to a much lesser extent, pump power in a nonresonant cw Raman laser. The dominant source of the index shift is shown to be thermal and significantly larger than dispersion associated with the Raman resonance. A steady-state theoretical model based on internal heating that is due to inelastic Raman scattering events accurately describes the observed behavior. With this model, frequency pulling of the Raman cavity resonance and phase distortions of the intracavity Gaussian beam are predicted for various levels of generated Stokes power.

© 2000 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4870) Nonlinear optics : Photothermal effects
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated
(190.5940) Nonlinear optics : Self-action effects

Citation
Peter A. Roos, Jay K. Brasseur, and John L. Carlsten, "Intensity-dependent refractive index in a nonresonant cw Raman laser that is due to thermal heating of the Raman-active gas," J. Opt. Soc. Am. B 17, 758-763 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-5-758


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23, 367–369 (1998).
  2. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999).
  3. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999).
  4. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
  5. K. E. Rieckhoff, “Self-induced divergence of CW laser beams in liquids—a new nonlinear effect in the propagation of light,” Appl. Phys. Lett. 9, 87–88 (1966).
  6. R. L. Carman and P. L. Kelley, “Time dependence in the thermal blooming of laser beams,” Appl. Phys. Lett. 12, 241–243 (1968).
  7. S. A. Akhmanov, D. P. Krindach, A. V. Migulin, A. P. Sukhorukov, and R. V. Khokhlov, “Thermal self-actions of laser beams,” IEEE J. Quantum Electron. QE-4, 568–575 (1968).
  8. F. W. Dabby, R. W. Boyko, C. V. Shank, and J. R. Whinnery, “Short time-constant thermal self-defocusing of laser beams,” IEEE J. Quantum Electron. QE-5, 516–520 (1969).
  9. M. M. Audibert, C. Joffrin, and J. Ducuing, “Vibrational relaxation in hydrogen—rare-gas mixtures,” Chem. Phys. Lett. 1, 26–28 (1973).
  10. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), p. 140.
  11. P. M. Morse and H. Feshback, Methods of Theoretical Physics (McGraw Hill, New York, 1953), p. 1191.
  12. W. H. Beyer, CRC Standard Mathematical Tables and Formulae, 29th ed. (CRC Press, Boca Raton, Fla., 1991), p. 373.
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
  14. D. E. Gray, American Institute of Physics Handbook, 2nd ed. (McGraw Hill, New York, 1963). Adjusted for pressure of 12 atm and temperature of 293 K.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited