OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 5 — May. 1, 2000
  • pp: 840–850

Gain and carrier temperature response of semiconductor laser media to short optical pulses

T. V. Sarkisyan, A. T. Rosenberger, A. N. Oraevsky, and D. K. Bandy  »View Author Affiliations


JOSA B, Vol. 17, Issue 5, pp. 840-850 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000840


View Full Text Article

Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The gain and carrier temperature response of semiconductor laser media to picosecond optical pulses with various pulse energies is obtained by means of a model that is based on rate equations extended to include the carrier energy density equation. The temperature dynamics are obtained from the carrier energy density by use of a quasi-equilibrium Fermi–Dirac distribution. We study the cases of media whose prepulse states are strongly absorbing, transparent, and strongly amplifying at the frequency of the pulse. The results show that the various physical processes that influence the gain and carrier temperature contribute differently, depending on both the initial state of the medium and the pulse energy. In particular, the influence of free-carrier absorption and two-photon absorption on the dynamics of the carrier temperature and the gain coefficient is discussed in detail.

© 2000 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.0320) Ultrafast optics : Ultrafast optics
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Citation
T. V. Sarkisyan, A. T. Rosenberger, A. N. Oraevsky, and D. K. Bandy, "Gain and carrier temperature response of semiconductor laser media to short optical pulses," J. Opt. Soc. Am. B 17, 840-850 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-5-840


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. S. Stix, M. P. Kesler, and E. P. Ippen, “Observations of subpicosecond dynamics in GaAlAs laser diodes,” Appl. Phys. Lett. 48, 1722–1725 (1986).
  2. W. Z. Lin, L. G. Fujimoto, E. P. Ippen, and R. A. Logan, “Femtosecond carrier dynamics in GaAs,” Appl. Phys. Lett. 50, 124–126 (1987).
  3. M. P. Kesler and E. P. Ippen, “Subpicosecond gain dynamics in GaAlAs laser diodes,” Appl. Phys. Lett. 51, 1765–1767 (1987).
  4. K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56, 1740–1742 (1990).
  5. J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
  6. B. N. Gomatam and A. P. DeFonzo, “Theory of hot carrier effects on non-linear gain in GaAs–GaAlAs lasers and amplifiers,” IEEE J. Quantum Electron. 26, 1689–1704 (1990).
  7. M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
  8. A. N. Oraevsky, M. M. Clark, and D. K. Bandy, “Many-temperature model of laser with dynamics,” Opt. Commun. 85, 360–364 (1991).
  9. M. Willatzen, T. Takahashi, and Y. Arakawa, “Nonlinear gain effects due to carrier heating and spectral hole burning in strained-quantum well lasers,” IEEE Photon. Technol. Lett. 4, 682–685 (1992).
  10. A. V. Uskov, J. Mørk, and J. Mark, “Theory of short-pulse gain saturation in semiconductor laser amplifiers,” IEEE Photon. Technol. Lett. 4, 443–446 (1992).
  11. V. I. Tolstikhin and M. Willander, “Carrier heating effects in dynamic-single-frequency GaInAsP–InP laser diodes,” IEEE J. Quantum Electron. 31, 814–833 (1995).
  12. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 12, 1993–2004 (1995).
  13. C.-Y. Tsai, R. M. Spencer, Y.-H. Lo, and L. F. Eastman, “Nonlinear gain coefficients in semiconductor lasers: effects of carrier heating,” IEEE J. Quantum Electron. 32, 201–212 (1996).
  14. R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
  15. A. N. Oraevsky, T. V. Sarkisyan, and D. K. Bandy, “Nonlinear gain and bistable regime of free-running oscillation in a semiconductor laser,” Laser Phys. 7, 920–927 (1997).
  16. T. V. Sarkisyan, A. N. Oraevsky, A. T. Rosenberger, R. L. Rolleigh, and D. K. Bandy, “Nonlinear gain and carrier temperature dynamics in semiconductor laser media,” J. Opt. Soc. Am. B 15, 1107–1119 (1998).
  17. V. M. Galitskii and V. F. Elesin, Resonant Interaction of Electromagnetic Fields with Semiconductors (Energoatomizdat, Moscow, 1986) (in Russian).
  18. W. Schäfer and K. Henneberger, “Pulse propagation and carrier kinetics in laser excited semiconductors,” Phys. Status Solidi B 159, 59–69 (1990).
  19. A. Knorr, R. Binder, M. Lindberg, and S. W. Koch, “Theoretical study of resonant ultrashort-pulse propagation in semiconductors,” Phys. Rev. A 46, 7179–7186 (1992).
  20. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).
  21. C. M. Bowden and G. P. Agrawal, “Bloch–Maxwell formulation for semiconductors: effects of coherent Coulomb exchange,” Phys. Rev. A 51, 4132–4139 (1995).
  22. O. Hess and T. Kuhn, “Maxwell–Bloch equations for spatially inhomogeneous semiconductor lasers. I. Theoretical formulation,” Phys. Rev. A 54, 3347–3359 (1996).
  23. G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980).
  24. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993).
  25. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  26. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995), p. 358.
  27. L. A. Rivlin, A. T. Semenov, and S. D. Yakubovich, Dinamika i Spektry Izlucheniya Poluprovodnikovykh Lazerov (Radio Svyaz, Moscow, 1983) (in Russian).
  28. L. A. Rivlin, “Dynamics and emission spectra of semiconductor lasers,” J. Sov. Laser Res. 7, 57–206 (1986).
  29. Semiconductors: Group IV Elements and III–V Compounds, O. Madelung, ed. (Springer-Verlag, Berlin, 1991), pp. 101–113.
  30. J. Mørk and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13, 1803–1816 (1996).
  31. H. C. Casey, Jr., and F. Stern, “Concentration-dependent absorption and spontaneous emission in heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
  32. H. C. Casey, Jr., and M. B. Panish, Heterostructure Part B: Materials and Operating Characteristics (Academic, New York, 1978).
  33. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
  34. A. Villeneuve, M. Sundheimer, N. Finalayson, G. I. Stegeman, S. Morasca, C. Rigo, R. Calvani, and C. DeBernardi, “Two-photon absorption in In1−x−yGaxAlyAs/InP waveguides at communications wavelengths,” Appl. Phys. Lett. 56, 1865–1867 (1990).
  35. J. R. Karin, A. V. Uskov, R. Nagarajan, J. E. Bowers, and J. Mørk, “Carrier heating dynamics in semiconductor waveguide saturable absorbers,” Appl. Phys. Lett. 65, 2708–2711 (1994).
  36. A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 1, 552–561 (1995).
  37. A. V. Uskov, J. R. Karin, J. E. Bowers, J. G. McInerney, and J. Le Bihan, “Effects of carrier cooling and carrier heating in saturation dynamics and pulse propagation through bulk semiconductor absorbers,” IEEE J. Quantum Electron. 34, 2162–2171 (1998).
  38. D. Bimberg and J. Mycielski, “Recombination-induced heating of free carriers in a semiconductor,” Phys. Rev. B 31, 5490–5493 (1985).
  39. D. Bimberg and J. Mycielski, “The recombination-induced temperature change of no-equilibrium charge carriers,” J. Phys. C 19, 2363–2373 (1986).
  40. A. N. Oraevsky, T. Sarkisyan, and D. K. Bandy, “Dynamics of the temperature of a recombining ensemble of fermions,” JETP Lett. 62, 673–676 (1995).
  41. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited