OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1084–1092

Modeling picosecond-laser-driven neonlike titanium x-ray laser experiments

Joseph Nilsen, Yuelin Li, and James Dunn  »View Author Affiliations


JOSA B, Vol. 17, Issue 6, pp. 1084-1092 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001084


View Full Text Article

Enhanced HTML    Acrobat PDF (652 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The technique of first using a nanosecond pulse to preform and ionize the plasma and then using a picosecond pulse to heat the plasma enables low-Z neonlike and nickellike ions to lase, driven by small lasers, with only 10 J of energy. Recent experiments at the Compact Multipulse Terawatt laser facility at Lawrence Livermore National Laboratory have demonstrated lasing in neonlike titanium by irradiation of 1-cm-long slab targets of titanium with a 4.8-J, 800-ps prepulse that is followed 1.6 ns later by a 6-J, 1-ps drive pulse. In this study we model the neonlike titanium x-ray laser under those experimental conditions. The LASNEX code is used to calculate the hydrodynamic evolution of the plasma and to provide the temperatures and densities to the XRASER code, which then performs the kinetics calculations to determine the gain. The temporal and spatial evolution of the plasma is studied both with and without radiation transport included for the 3d and the 3s2p neonlike titanium resonance lines. Large regions with gains greater than 80 cm-1 are predicted for the 3p 1S03s 1P1 neonlike titanium laser line at 32.6 nm. The gain is shown to be quasi-steady-state over these time scales with regard to the equilibration of the excited-state populations. The transient nature of the gain is shown to be due to the ionization balance in the plasma. Given the large gain and the large gradients in these plasmas, we calculate x-ray laser propagation, including refraction effects, to understand which regions have the right combination of high gain and low density gradients for an optical contribution to the x-ray laser output. Calculations with different delays between the long and the short pulses and with different durations for the short pulse are presented to provide a better insight into optimization of the laser output. High gain is also predicted and observed for the self-photopumped 3d 1P13p 1P1 laser line at 30.1 nm in neonlike titanium, and calculations are presented to help understand this lasing mechanism.

© 2000 Optical Society of America

OCIS Codes
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(340.0340) X-ray optics : X-ray optics

Citation
Joseph Nilsen, Yuelin Li, and James Dunn, "Modeling picosecond-laser-driven neonlike titanium x-ray laser experiments," J. Opt. Soc. Am. B 17, 1084-1092 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-6-1084

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited