OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 919–926

High-average-power (>20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland  »View Author Affiliations

JOSA B, Vol. 17, Issue 6, pp. 919-926 (2000)

View Full Text Article

Acrobat PDF (515 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strain-compensated double InGaAs quantum-well saturable Bragg reflectors (SBR’s) with high damage thresholds have been developed for use as mode-locking elements in high-average-power neodymium lasers. Nd:YVO<sub>4</sub> lasers have been developed with these new SBR’s, which produce transform-limited pulses of 21-ps duration at 90 MHz and an average power of 20 W in a diffraction-limited output beam. The peak pulse power at an output power of 20 W was 10.6 kW. A comparison of the operating parameters of strained single and strain-compensated double-well SBR’s indicates that the damage threshold increased by a factor of at least 2–3. Long cavity laser variants were investigated to assess the limitations of further power scaling. At a repetition frequency of 36-MHz stable mode-locked pulses with peak pulse powers of 24.4 kW and pulse energies of 0.6 μJ could be generated.

© 2000 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.6000) Materials : Semiconductor materials

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davies, and S. W. Bland, "High-average-power (>20-W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors," J. Opt. Soc. Am. B 17, 919-926 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chui, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
  2. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–451 (1996), and references therein.
  3. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996), and references therein.
  4. J. D. Kafka, M. L. Watts, and J. W. Pieterse, “Synchronously pumped optical parametric oscillators with LiB3O5,” J. Opt. Soc. Am. B 12, 2147–2157 (1995).
  5. B. Ruffing, A. Nebel, and R. Wallenstein, “A 20-W KTA-OPO synchronously pumped by a cw mode-locked Nd:YVO4 oscillator-amplifier system,” in Lasers and Electro-Optics, Vol. II of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CWB2.
  6. J. Aus der Au, S. F. Schaer, R. Paschotta, C. Honninger, and U. Keller, “High-power diode-pumped passively mode-locked Yb:YAG lasers,” Opt. Lett. 24, 1281–1283 (1999).
  7. G. J. Spuhler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24, 528–530 (1999).
  8. C. J. Howle, A. I. Ferguson, S. T. Lee, D. Burns, and M. D. Dawson, “A high power SBR mode-locked Nd:YLF laser,” in European Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CtuE3; T. Graf, A. I. Ferguson, E. Bente, D. Burns, and M. D. Dawson, “Multi-watt Nd:YVO4 laser, mode mocked by a saturable Bragg reflector and side pumped by a diode laser bar,” Opt. Commun. 159, 84–87 (1999).
  9. C. A. Wang and H. K. Choi, “Organometallic vapor phase epitaxy of high performance strained-layer InGaAs-AlGaAs diode lasers,” IEEE J. Quantum Electron. 27, 681–686 (1991).
  10. R. D. Dupuis and P. D. Dapkus, “Room-temperature operation of Ga(1−x)AlxAs/GaAs double-heterostructure lasers grown by metalorganic chemical vapor phase deposition,” Appl. Phys. Lett. 31, 466–468 (1977).
  11. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers,” J. Cryst. Growth 32, 265–273 (1976).
  12. R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. 47, 322–324 (1985).
  13. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995); C. Hönninger, R. Pascotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
  14. C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruhle, and M. Hilpert, “Optically pumped (GaIn)As/Ga(PAs) vertical-cavity surface emitting lasers with optimized dynamics,” Appl. Phys. Lett. 74, 1367–1369 (1999).
  15. ±2% for nonrotated MOCVD growth.
  16. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
  17. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A 4, 1962–1969 (1987).
  18. Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, and T. Tajime, “208-W TEM00 operation of a diode-dumped Nd:YAG rod laser,” Opt. Lett. 24, 679–681 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited