OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1140–1146

Study of developing thermal fixed holograms in lithium niobate

Eva M. de Miguel, Josefa Limeres, Mercedes Carrascosa, and Luis Arizmendi  »View Author Affiliations


JOSA B, Vol. 17, Issue 7, pp. 1140-1146 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001140


View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental results on the developing kinetics and final diffraction efficiency of fixed holograms in iron-doped lithium niobate are presented. Samples with two different oxidation states are studied. The developing kinetics of well-oxidized samples show oscillations superposed to a saturation dependence, whereas they are not present for the less oxidized sample. The final developed ratio is found to depend on the grating spacing and the oxidation state of the samples. All these features are well explained with the charge-transport theory and are found to be dependent on the photovoltaic properties of the samples, doping, and oxidation state. From the analysis of the experimental data, the photovoltaic field amplitude of the samples is obtained.

© 2000 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5320) Materials : Photorefractive materials
(210.0210) Optical data storage : Optical data storage
(210.4810) Optical data storage : Optical storage-recording materials

Citation
Eva M. de Miguel, Josefa Limeres, Mercedes Carrascosa, and Luis Arizmendi, "Study of developing thermal fixed holograms in lithium niobate," J. Opt. Soc. Am. B 17, 1140-1146 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-7-1140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994). [CrossRef]
  2. S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998). [CrossRef]
  3. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996). [CrossRef] [PubMed]
  4. A. Mendez and L. Arizmendi, “Maximum diffraction efficiency of fixed holograms in lithium niobate,” Opt. Mater. 10, 55–59 (1998). [CrossRef]
  5. D. Kirillov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991). [CrossRef] [PubMed]
  6. G. Montemezzani and P. Günter, “Thermal hologram fixing in pure and doped KNbO3 crystals,” J. Opt. Soc. Am. B 7, 2323–2328 (1990). [CrossRef]
  7. T. Imai, S. Yagi, and H. Yamazaki, “Thermal fixing of photorefractive holograms in KTa1−xNbxO3 and its relation to proton concentration,” J. Opt. Soc. Am. B 13, 2524–2528 (1996). [CrossRef]
  8. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1988). [CrossRef]
  9. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  10. M. Carrascosa and F. Agulló-López, “Optimization of the developing stage for fixed gratings in LiNbO3,” Opt. Commun. 126, 240–246 (1996). [CrossRef]
  11. A. Yariv, S. Orlov, G. Rakuljic, and V. Leyva, “Holographic fixing, readout and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995). [CrossRef] [PubMed]
  12. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996). [CrossRef]
  13. S. Breer, K. Buse, and F. Rickermann, “Improved developing of thermally fixed holograms in photorefractive LiNbO3 crystals with high-intensity laser pulses,” Opt. Lett. 23, 73–75 (1998). [CrossRef]
  14. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and E. Räuber, “Photorefractive centers in LiNbO3. Study by optical-, mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977). [CrossRef]
  15. A. García-Cabañes, L. Arizmendi, J. M. Cabrera, and F. Agulló-López, “New aspects of reduction treatments on Fe-doped LiNbO3,” Cryst. Lattice Defects Amorphous Mater. 15, 131–135 (1987).
  16. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992). [CrossRef]
  17. M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–262 (1998). [CrossRef]
  18. R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, and E. Krätzig, “Space charge field limitations in photorefractive LiNbO3: Fe crystals,” Appl. Phys. B 51, 364–370 (1990). [CrossRef]
  19. R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited