OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1147–1157

First-harmonic diffusion model for holographic grating formation in photopolymers

Sabino Piazzolla and B. Keith Jenkins  »View Author Affiliations

JOSA B, Vol. 17, Issue 7, pp. 1147-1157 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a model with which to describe and predict the formation of gratings during exposure in holographic photopolymers. This model combines the action of photopolymerization and of free-monomer diffusion during holographic exposures. We consider the free-monomer density to be spatially varying, during exposure, with a single first-harmonic term out of phase with respect to the intensity interference pattern. Examples of behavior predicted by the model include the variation of the saturation diffraction efficiency with recording exposure intensity and with beam intensity modulation, as well as the variation of recorded grating modulation during dark diffusion transient. The model is supported by experiments carried out by exposure of DuPont HRF-150-38 holographic photopolymers.

© 2000 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.5470) Materials : Polymers
(210.2860) Optical data storage : Holographic and volume memories
(210.4810) Optical data storage : Optical storage-recording materials

Sabino Piazzolla and B. Keith Jenkins, "First-harmonic diffusion model for holographic grating formation in photopolymers," J. Opt. Soc. Am. B 17, 1147-1157 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971). [CrossRef] [PubMed]
  2. R. H. Wopschall and T. Pampalone, “Dry photopolymer film for recording holograms,” Appl. Opt. 11, 2096–2097 (1972). [CrossRef] [PubMed]
  3. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975). [CrossRef] [PubMed]
  4. W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” in Practical Holography IV, T. H. Jeong and J. E. Ludman eds., Proc. SPIE 1212, 20–29 (1990). [CrossRef]
  5. A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, in “Hologram recording in DuPont’s new photopolymer materials,” in Practical Holography IV, T. H. Jeong and J. E. Ludman eds., Proc. SPIE 1212, 30–39 (1990). [CrossRef]
  6. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994). [CrossRef] [PubMed]
  7. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996). [CrossRef] [PubMed]
  8. C. Zhao and R. T. Chen, “Fan-out intensity optimization of bidirectional photopolymer hologram-based optical backplane bus,” Opt. Eng. 35, 983–988 (1996). [CrossRef]
  9. U. S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993). [CrossRef]
  10. J. H. Hong, I. McMichael, T. Y. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: technique and architectures,” Opt. Eng. 34, 2193–2203 (1995). [CrossRef]
  11. B. Zhong, S. Piazzolla, and Z. Karim, “Color holographic filters for liquid crystal displays,” presented at the Fourth Asia Society for Information Display Meeting, February 13–14, 1997, Hong Kong.
  12. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994). [CrossRef]
  13. G. Zhao and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun. 115, 528–532 (1995). [CrossRef]
  14. G. Zhao and P. Mouroulis, “Extension of a diffusion model for holographic photopolymers,” J. Mod. Opt. 42, 2571–2573 (1995). [CrossRef]
  15. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997). [CrossRef]
  16. K. Curtis and D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992). [CrossRef] [PubMed]
  17. A. Fimia, R. Fuentes, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Real-time measurement of diffraction efficiency in holographic material with nonlinear responses,” J. Mod. Opt. 41, 1867–1873 (1994). [CrossRef]
  18. S. Piazzolla and B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996). [CrossRef] [PubMed]
  19. S. Piazzolla and B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt. 46, 2079–2110 (1999). [CrossRef]
  20. S. Piazzolla and B. K. Jenkins, “Material limitations in holographic photopolymers,” presented at the Optical Society of America 1996 Annual Meeting, Rochester, New York, October 20–24, 1996.
  21. H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  22. H. Hervet, W. Urbach, and R. Rondelez, “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys. 68, 2725–2729 (1978). [CrossRef]
  23. A. Reiser, Photoreactive Polymers (Wiley, New York, 1989).
  24. R. B. Banks, Growth and Diffusion Phenomena (Springer-Verlag, Berlin, 1994).
  25. S. Piazzolla, “Real-time effects in volume holographic materials for optical storage, copying, and optical neural networks,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited