All-optical switching in a high- Q Fabry–Perot cavity filled with a quadratic material
JOSA B, Vol. 17, Issue 7, pp. 1188-1196 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001188
Acrobat PDF (193 KB)
Abstract
A theoretical analysis of the nonlinear quadratic interaction between two monochromatic plane waves at frequencies ω and 2ω in a Fabry–Perot cavity shows that all-optical control of reflectivity and transmissivity of the fundamental beam is possible under suitable conditions. We report all-optical switching of the fundamental beam for cavity lengths that vary from a few micrometers to a few millimeters. Specifically, we show that 100% all-optical switching can occur for a 6-µm cavity when the nonlinear coefficient is not greater than 20 pm/V and the input intensity does not exceed 10 GW/cm^{2}. Our analytical results are obtained without use of the slowly varying envelope approximation and without resort to the undepleted-pump approximation.
© 2000 Optical Society of America
OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
Citation
G. D'Aguanno, E. Angelillo, C. Sibilia, M. Scalora, and M. Bertolotti, "All-optical switching in a high- Q Fabry–Perot cavity filled with a quadratic material," J. Opt. Soc. Am. B 17, 1188-1196 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-7-1188
Sort: Year | Journal | Reset
References
- L. A. Ostrovskij, “Self-action of light in crystals,” JETP Lett. 5, 272–275 (1967).
- J. P. Coffinet and F. De Martini, “Coherent excitation of polaritons in gallium phosphide,” Phys. Rev. Lett. 22, 60–63 (1969).
- T. K. Gustafson, J. P. E. Taran, P. L. Kelley, and R. Y. Chiao, “Self-modulation of picosecond pulses in electro-optics crystals,” Opt. Commun. 2, 17–21 (1970).
- E. Yablonovitch, C. Flytzanis, and N. Bloembergen, “Anisotropic interference of three-wave and double-two wave frequency mixing in GaAs,” Phys. Rev. Lett. 29, 865–868 (1972).
- J. M. R. Thomas and J. P. E. Taran, “Pulse distortion in mismatched second harmonic generation,” Opt. Commun. 4, 329–334 (1972).
- D. N. Klyshko and B. F. Polkovnikov, “Phase modulation and self-modulation of light in three-photon processes,” Sov. J. Quantum Electron. 3, 324–326 (1974).
- S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin, “Nonlinear optical effects of fourth order in the field in a lithium formiate crystal,” JETP Lett. 20, 117–118 (1974).
- J. M. Jarborough and O. Amman, “Simultaneous optical parametric oscillation, second harmonic generation and difference-frequency generation,” Appl. Phys. Lett. 18, 145–147 (1971).
- G. I. Stegeman and P. L. Wa, in Nonlinear Optical Materials and Devices for Applications in Information Technology (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 285–317.
- N. R. Belashenkov, S. V. Gagarskij, and M. V. Inochkin, “Nonlinear refraction of light on second harmonic generation,” Opt. Spectrosc. (USSR) 66, 806–808 (1989).
- R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
- R. Danielius, P. Di Trapani, A. Dubietis, A. Piskarskas, D. Podenas, and G. P. Banfi, “Self-diffraction through cascaded second-order frequency-mixing effects in β-barium borate,” Opt. Lett. 18, 574–576 (1993).
- Z. Y. Ou, “Observation of nonlinear phase shift in cw harmonic generation,” Opt. Commun. 124, 430–437 (1995).
- E. Fazio, C. Sibilia, F. Senesi, and M. Bertolotti, “All-optical switching during quasi-collinear second-harmonic generation,” Opt. Commun. 127, 62–68 (1996).
- Z. Wang, D. J. Hagan, E. W. Van Stryland, J. Zyss, P. Vidakovic, and W. E. Toruellas, “Cascaded second-order effects in N-(4-nitrophenyl)-L-prolinol, in a molecular single crystal,” J. Opt. Soc. Am. B 14, 76–86 (1997).
- P. Vidakovic, D. J. Lovering, J. A. Levenson, J. Webjorn, and P. St. J. Russell, “Large nonlinear phase shift owing to cascaded χ^{(2)} in quasi-phase matched bulk LiNbO_{3},” Opt. Lett. 22, 277–279 (1997).
- G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear optical processes,” Opt. Lett. 18, 13–15 (1993).
- A. L. Belostotsky, A. S. Leonov, and A. V. Maleshko, “Nonlinear phase change in a type II second-harmonic generation under exact phase-matched conditions,” Opt. Lett. 19, 856–858 (1994).
- A. Re, C. Sibilia, E. Fazio, and M. Bertolotti, “Field dependent effects in a quadratic nonlinear medium,” J. Mod. Opt. 42, 823–839 (1995).
- A. Kobyakov and F. Lederer, “Cascading of quadratic nonlinearities: an analytical study,” Phys. Rev. A 54, 3455–3471 (1996).
- G. D’Aguanno, C. Sibilia, E. Fazio, and M. Bertolotti, “Three-wave mixing in a quadratic material under perfect phase-matching,” Opt. Commun. 142, 75–78 (1997).
- G. D’Aguanno, C. Sibilia, E. Fazio, E. Ferrari, and M. Bertolotti, “Field phase modulation and input phase and intensity dependence in a nonlinear second-order interaction,” J. Mod. Opt. 45, 1049–1066 (1998).
- J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
- G. Assanto, “Quadratic cascading: effects and applications,” in Beam Shaping and Control with Nonlinear Optics, F. Kajzar and R. Reinisch, eds. (Plenum, New York, 1998), pp. 341–374.
- R. L. Byer and A. Piskarskas, eds., Feature on optical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 1656–1791; 2148–2243 (1993).
- V. Berger, “Second-harmonic generation in monolithic cavities,” J. Opt. Soc. Am. B 14, 1351–1360 (1997).
- C. Simonneu, J. P. Debray, J. C. Harmand, P. Vidakovic, D. J. Lovering, and J. A. Levenson, “Second harmonic generation in a doubly resonant semiconductor microcavity,” Opt. Lett. 23, 1775–1777 (1997).
- L. A. Lugiato, G. Strini, and F. De Martini, “Squeezed states in second-harmonic generation,” Opt. Lett. 8, 256–258 (1983).
- R. Paschotta, M. Collet, P. Kurz, K. Fiedler, H. A. Bachor, and J. Mlynek, “Bright squeezed light from a singly resonant frequency doubler,” Phys. Rev. Lett. 72, 3807–3810 (1994).
- R. Reinisch, E. Popov, and M. Nevière, “Second harmonic generation-induced optical bistability in prism or grating couplers,” Opt. Lett. 20, 854–856 (1995); R. Reinisch, M. Nevière, and E. Popov, “Phase-matched guided wave optical bistability in χ^{(2)} optical resonators,” Opt. Lett. 20, 2472–2474 (1995).
- L. Caleo, C. Sibilia, P. Masciulli, and M. Bertolotti, “Nonlinear optical filter based on cascading second order effect,” J. Opt. Soc. Am. B 14, 2315–2324 (1997); C. Sibilia, A. Re, E. Fazio, and M. Bertolotti, “Cascading effect on second-harmonic generation in a ring cavity,” J. Opt. Soc. Am. B 13, 1151–1159 (1996).
- C. Cojocaru, J. Martorell, R. Vilaseca, E. Fazio, and J. Trull, “Active reflection via phase-insensitive quadratic nonlinear interaction within a microcavity,” Appl. Phys. Lett. 74, 504–506 (1999).
- J. E. Sipe and G. I. Stegeman, “Comparison of normal mode and total field analysis techniques in planar integrated optics,” J. Opt. Soc. Am. 69, 1676–1683 (1979).
- B. Crosignani, P. Di Porto, and A. Yariv, “Coupled-mode theory and slowly-varying approximation in guided-wave optics,” Opt. Commun. 78, 237–239 (1990).
- D. G. Hall, “A comment on the coupled-mode equations used in guided-wave optics,” Opt. Commun. 82, 453–455 (1991).
- P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), pp. 87–88.
- A. E. Kaplan, “Eigenmodes of χ^{(2)} wave mixings: cross-induced second-order nonlinear refraction,” Opt. Lett. 18, 1223–1225 (1993).
- E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
- S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
- M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, 1078–1081 (1996).
- J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expression for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
- M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2382 (1998).
- M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
- M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997); J. W. Haus, R. Viswanathan, M. Scalora, A. G. Kalocsai, J. D. Cole, and J. Theimer, “Enhanced second-harmonic generation in media with a weak periodicity,” Phys. Rev. A 57, 2120–2128 (1998).
- G. D’Aguanno, M. Centini, C. Sibilia, M. Bertolotti, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Enhancement of χ^{(2)} cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999); M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.