OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1197–1204

Multicharged vortex evolution in seeded second-harmonic generation

Gabriel Molina-Terriza and Lluis Torner  »View Author Affiliations

JOSA B, Vol. 17, Issue 7, pp. 1197-1204 (2000)

View Full Text Article

Acrobat PDF (528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show the dynamics of the evolution of screw phase dislocations in the wave fronts of Gaussian beams with nested multiple-charged vortices that propagate in quadratic nonlinear crystals under conditions for seeded second-harmonic generation. The number of existing vortices is shown to depend on the input light and material conditions, including the topological charge, the width and intensity of the pump and seed signals, and the propagation length inside the crystal. A closed-form model, which holds for arbitrary topological charges of the pump and seed inputs under conditions of negligible depletion of the pump beam, is developed to predict the number of vortices that exist at any instant in the propagation. It is discovered that different combinations of input charges yield a fascinating variety of vortex patterns.

© 2000 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.7220) Nonlinear optics : Upconversion

Gabriel Molina-Terriza and Lluis Torner, "Multicharged vortex evolution in seeded second-harmonic generation," J. Opt. Soc. Am. B 17, 1197-1204 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
  3. M. Padgett and L. Allen, “Optical tweezers and spanners,” Phys. World 10(9), 35–38 (1997).
  4. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993).
  5. B. Luther-Davies, J. Christou, V. Tikhonenko, and Y. S. Kivshar, “Optical vortex solitons: experiment versus theory,” J. Opt. Soc. Am. B 14, 3045–3053 (1997).
  6. D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997).
  7. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
  8. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
  9. T. Ackemann, E. Kriege, and W. Lange, “Phase singularities via nonlinear beam propagation in sodium vapor,” Opt. Commun. 115, 339–346 (1995).
  10. A. V. Ilyenkov, A. I. Khiznyak, L. V. Kreminskaya, M. S. Soskin, and M. V. Vasnetsov, “Birth and evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3: Fe crystal,” Appl. Phys. B: Lasers Opt. 62, 465–471 (1996).
  11. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
  12. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54, R3742–R3745 (1996); J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second harmonic generation and the conservation of orbital angular momentum with high-order Laguerre–Gaussian modes,” Phys. Rev. A 56, 4193–4196 (1997).
  13. A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
  14. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
  15. D. V. Petrov, G. Molina-Terriza, and L. Torner, “Vortex evolution in parametric wave mixing,” Opt. Commun. 162, 357–366 (1999).
  16. D. V. Petrov and L. Torner, “Observation of topological charge pair nucleation in parametric wave mixing,” Phys. Rev. E 58, 7903–7907 (1998).
  17. I. Freund, “Critical point explosions in two-dimensional wave fields,” Opt. Commun. 159, 99–117 (1999).
  18. L. Torner, J. P. Torres, J. M. Soto-Crespo, and D. V. Petrov, “From topological charge information to sets of solitons in quadratic nonlinear media,” Opt. Quantum Electron. 30, 809–827 (1998).
  19. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  20. A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Sum-frequency mixing of optical vortices in nonlinear crystals,” Opt. Commun. 150, 372–380 (1998).
  21. G. Molina-Terriza, L. Torner, and D. V. Petrov, “Vortex streets in walking parametric wave mixing,” Opt. Lett. 24, 899–901 (1999).
  22. P. D. Trapani, A. Berzanskis, S. Minardi, S. Sapone, and W. Chinaglia, “Observation of optical vortices and J0 Bessel-like beams in quantum-noise parametric amplification,” Phys. Rev. Lett. 81, 5133–5136 (1998).
  23. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited