OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1223–1228

Coherent anti-Stokes emission in a continuous-wave Raman laser in H2

Jason K. Brasseur, Peter A. Roos, K. S. Repasky, and John L. Carlsten  »View Author Affiliations


JOSA B, Vol. 17, Issue 7, pp. 1223-1228 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001223


View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the observation of cw coherent anti-Stokes emission from a nonresonant cw Raman laser in H2. The anti-Stokes emission is collinear with the pump and Stokes beams with a Gaussian spatial profile. The external anti-Stokes to Stokes power ratio is 26.3 parts per million when the laser cavity is tuned to the center of the Raman resonance and higher for slight detuning from line center. A steady-state theory is presented that accurately describes the anti-Stokes behavior as a function of output Stokes power and detuning from the Raman resonance.

© 2000 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.5890) Nonlinear optics : Scattering, stimulated
(190.7220) Nonlinear optics : Upconversion

Citation
Jason K. Brasseur, Peter A. Roos, K. S. Repasky, and John L. Carlsten, "Coherent anti-Stokes emission in a continuous-wave Raman laser in H2," J. Opt. Soc. Am. B 17, 1223-1228 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-7-1223


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23, 367–369 (1998). [CrossRef]
  2. K. S. Repasky, J. K. Brasseur, L. S. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. B 15, 1667–1673 (1998). [CrossRef]
  3. K. S. Repasky, L. S. Meng, J. K. Brasseur, J. L. Carlsten, and R. C. Swanson, “High-efficiency, continuous-wave Raman lasers,” J. Opt. Soc. Am. B 16, 717–721 (1999). [CrossRef]
  4. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999). [CrossRef]
  5. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Diode-pumped nonresonant continuous-wave Raman laser in H2 with resonant optical feedback stabilization,” Opt. Lett. 24, 1130–1132 (1999). [CrossRef]
  6. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, “Intensity-dependent refractive index in a nonresonant cw Raman laser that is due to thermal heating of the Raman-active gas,” J. Opt. Soc. Am. B 17, 758–763 (2000). [CrossRef]
  7. J. L. Carlsten and T. J. McIlrath, “Observations of stimulated anti-Stokes scattering in barium vapor,” J. Phys. B 6, L80–L85 (1973). [CrossRef]
  8. W. R. Lempert, B. Zhang, R. B. Miles, and J. P. Looney, “Stimulated Raman scattering and coherent anti-Stokes Raman spectroscopy in high-pressure oxygen,” J. Opt. Soc. Am. B 7, 715–721 (1990). [CrossRef]
  9. H. Moriwaki, S. Wada, H. Tashiro, K. Toyoda, A. Kasai, and A. Nakamura, “Wavelength conversion of quadrupled Nd: YAG laser radiation to the vacuum ultraviolet by anti-Stokes stimulated Raman scattering,” J. Appl. Phys. 74, 2175–2179 (1993). [CrossRef]
  10. A. Goehlich, U. Czarnetzki, and H. F. Döbele, “Increased efficiency of vacuum ultra-violet generation by stimulated anti-Stokes Raman scattering with Stokes seeding,” Appl. Opt. 37, 8453–8459 (1998). [CrossRef]
  11. B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. Am. B 7, 234–238 (1990). [CrossRef]
  12. A. Yariv, “Third-order optical nonlinearities—stimulated Raman and Brillouin scattering,” in Quantum Electronics, 3rd ed. (Wiley, New York, 1989); Chap. 18, pp. 473–474.
  13. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, “Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering,” Phys. Rev. Lett. 79, 209–212 (1997). [CrossRef]
  14. V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, New York, 1989), pp. 210–221.
  15. M. Scalora, S. Singh, and C. M. Bowden, “Anti-Stokes generation and soliton decay in stimulated Raman scattering,” Phys. Rev. Lett. 70, 1248–1250 (1993). [CrossRef] [PubMed]
  16. R. G. Harrison, Weiping Lu, and P. K. Gupta, “Origin of periodic, chaotic, and bistable emission from Raman lasers,” Phys. Rev. Lett. 63, 1372–1375 (1989). [CrossRef] [PubMed]
  17. J. R. Murry and A. Javan, “Effects of collisions on a Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972). [CrossRef]
  18. G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-4, 203–206 (1969). [CrossRef]
  19. In order to conserve energy, the areas for the pump, Stokes, and anti-Stokes beams, used to calculate power, need to be identical and are normalized to the pump beam. The wavelength dependence of the area for the Stokes beam is included in the mode-filling parameter of Ref. 18.
  20. All of the fits used the following parameters: λp=532nm, λs=683 nm, λas=435 nm, α=2.95×10−9 cm/W, Rp=0.99979, Rs=0.99977, Ras=0.24, Tp=156 ppm. Ts=163 ppm, Tas=0.76, l=7.68 cm, b=18 cm, Raman linewidth, Γ=610 MHz (FWHM), and the anti-Stokes to Stokes power ratio is 26 ppm.
  21. M. Born and E. Wolf, “Elements of the theory of interference and interferometers,” in Principles of Optics, 6th ed. (Cambridge University Press, New York, 1980), Chap. 7, pp. 323–329.
  22. J. L. Hall and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984). [CrossRef] [PubMed]
  23. The values for the pump and the Stokes mirror reflectivities were measured by a cavity ring-down. The values are Rp(s)=0.99979±0.00001 (0.99977±0.00001). The transmissions were Tp=153(±8)ppm, and Ts=150± (20)ppm.
  24. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and the line shift of the Q(1) and Q(0) transitions in normal para-H2,” Phys. Rev. A 33, 3113–3123 (1986). [CrossRef] [PubMed]
  25. W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986). [CrossRef]
  26. J. K. Brasseur, P. A. Roos, and J. L. Carlsten, “Frequency-tuning characteristics of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 17, 1229–1232 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited