OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1240–1256

Quantum noise of a mode-locked laser

H. A. Haus, M. Margalit, and C. X. Yu  »View Author Affiliations

JOSA B, Vol. 17, Issue 7, pp. 1240-1256 (2000)

View Full Text Article

Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The master equation of mode locking written in operator notation is supplemented with noise-source terms that conserve commutator brackets. The noise sources are associated with the reservoirs responsible for loss and gain. The output of a mode-locked laser with the least possible quantum noise is determined.

© 2000 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(320.5550) Ultrafast optics : Pulses
(320.7090) Ultrafast optics : Ultrafast lasers

H. A. Haus, M. Margalit, and C. X. Yu, "Quantum noise of a mode-locked laser," J. Opt. Soc. Am. B 17, 1240-1256 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
  2. H. A. Haus, “Measurement of amplitude noise in optical cavity masers,” Appl. Phys. Lett. 6, 85–87 (1965).
  3. S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
  4. F. Haake and M. Lewenstein, “Adiabatic expansion for the single-mode laser,” Phys. Rev. A 27, 1013–1021 (1983).
  5. H. Haken, “Quantum fluctuations in the laser,” in Frontiers in Quantum Optics, E. Pike and S. Sarkas, eds. (Hilger, London, 1986), pp. 355–398.
  6. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions: Basic Processes and Applications (Wiley, New York, 1992).
  7. L. Davidovich, “Sub-Poissonian processes in quantum optics,” Rev. Mod. Phys. 68, 127–173 (1996).
  8. J. L. Vey and W. Elasser, “Semiclassical description of noise and generation of amplitude squeezed states with vertical cavity surface emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 1299–1304 (1997).
  9. A. Jann and Y. Ben-Aryeh, “Quantum noise reduction in semiconductor lasers,” J. Opt. Soc. Am. B 13, 761–767 (1996).
  10. Z. Yifu and X. Min, “Amplitude squeezing and a transition from lasing with inversion to lasing without inversion in a four level laser,” Phys. Rev. A 48, 3895–3899 (1993).
  11. J. Arnaud, “Amplitude squeezing from spectral-hole burning: a semiclassical theory,” Phys. Rev. A 48, 2235–2245 (1993).
  12. A. N. Oraevsky, “Quantum fluctuations and formation of coherency in lasers,” J. Opt. Soc. Am. B 5, 933–945 (1988).
  13. F. Jeremie, J. Vey, and P. Gallion, “Optical corpuscular theory of semiconductor laser intensity noise and intensity squeezed light generation,” J. Opt. Soc. Am. B 14, 250–257 (1996).
  14. M. I. Kolobov, L. Davidovich, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
  15. C. Benkert, M. O. Scully, J. Bergou, L. Davidovich, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
  16. M. O. Scully, G. Sussmann, and C. Benkert, “Quantum noise reduction via maser memory effects: theory and applications,” Phys. Rev. Lett. 60, 1014–1017 (1988).
  17. H. A. Haus and J. A. Mullen, “Quantum noise in linear amplifiers,” Phys. Rev. 128, 2407–2415 (1992).
  18. H. A. Haus, “Steady-state quantum analysis of linear systems,” Proc. IEEE 58, 1599–1611 (1970).
  19. H. A. Haus and Y. Yamamoto, “Quantum noise of an injection-locked laser oscillator,” Phys. Rev. A 29, 1261–1274 (1984).
  20. Y. Yamamoto and H. A. Haus, “Commutation relations and laser linewidth,” Phys. Rev. A 41, 5164–5170 (1990).
  21. D. J. Jones, K. Hall, H. A. Haus, and E. P. Ippen, “Asynchronous pulse-modulated optical fiber-ring buffer,” Opt. Lett. 23, 177–179 (1998).
  22. H. A. Haus, “A theory of forced modelocking,” IEEE J. Quantum Electron. 11, 323–330 (1975).
  23. Y. Chen, F. X. Kärtner, U. Morgner, S. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion managed mode locking,” J. Opt. Soc. Am. B 16, 1999–2004 (1999).
  24. H. A. Haus and Y. Lai, “Quantum theory of soliton squeezing: a linearized approach,” J. Opt. Soc. Am. B 7, 368–392 (1990).
  25. Y. Lai and H. A. Haus, “Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation,” Phys. Rev. A 40, 844–853 (1989).
  26. Y. Lai and H. A. Haus, “Quantum theory of solitons in optical fibers. II. Exact solution,” Phys. Rev. A 40, 854–866 (1989).
  27. P. L. Hagelstein, “Application of a photon configuration-space model to soliton propagation in a fiber,” Phys. Rev. A 54, 2426–2438 (1996).
  28. I. H. Deutsch, R. Y. Chiao, and J. C. Garrison, “Two-photon bound states: the diphoton bullet in dispersive self-focusing media,” Phys. Rev. A 47, 3330–3336 (1993).
  29. S. Carter and P. Drummond, “Squeezed quantum solitons and Raman noise,” Phys. Rev. Lett. 67, 3757–3760 (1991).
  30. J. M. Fini, P. Hagelstein, and H. A. Haus, “Agreement of stochastic soliton formalism with second quantized and configuration-space models,” Phys. Rev. A 57, 4842–4585 (1998).
  31. J. P. Gordon, “Dispersive perturbations of the nonlinear Schrödinger equations,” J. Opt. Soc. Am. B 9, 91–97 (1992).
  32. H. A. Haus, W. Wong, and F. I. Khatri, “Continuum generation by perturbation of solitons,” J. Opt. Soc. Am. B 14, 304–313 (1997).
  33. H. A. Haus and C. Yu, “Soliton squeezing and the continuum,” J. Opt. Soc. Am. B 17, 618–628 (2000).
  34. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
  35. A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Modulation and filtering control of soliton transmission,” J. Opt. Soc. Am. B 9, 1350–1357 (1992).
  36. Y. Kodama and A. Hasegawa, “Generation of asymptotically stable optical solitons and suppression of the Gordon–Haus effect” Opt. Lett. 17, 31–33 (1992).
  37. S. Namiki, C. X. Yu, and H. A. Haus, “Observation of nearly quantum-limited timing jitter in an all-fiber ring laser,” J. Opt. Soc. Am. B 13, 2817–2823 (1996).
  38. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited