OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1313–1319

Broadband low-dispersion diffraction of femtosecond pulses from photorefractive quantum wells

M. Dinu, K. Nakagawa, M. R. Melloch, A. M. Weiner, and D. D. Nolte  »View Author Affiliations


JOSA B, Vol. 17, Issue 7, pp. 1313-1319 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001313


View Full Text Article

Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photorefractive quantum wells operating by means of the Franz–Keldysh effect were designed to diffract a bandwidth of approximately 8 nm, nearly matching that of 100-fs pulses, with little dispersion in the diffracted pulses. Large diffraction bandwidths are engineered by adjustment of the well width of the quantum wells in a specific nonuniform distribution across the thickness of the device. The causal relationship between the real and the imaginary parts of the refractive index leads to an excitonic spectral phase with linear dependence on wavelength, resulting in almost distortion-free diffraction. These features render photorefractive quantum-well devices suitable candidates for femtosecond pulse-shaping and spectral holography applications, without the previous bandwidth limitations.

© 2000 Optical Society of America

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.0250) Optical devices : Optoelectronics
(260.2030) Physical optics : Dispersion

Citation
M. Dinu, K. Nakagawa, M. R. Melloch, A. M. Weiner, and D. D. Nolte, "Broadband low-dispersion diffraction of femtosecond pulses from photorefractive quantum wells," J. Opt. Soc. Am. B 17, 1313-1319 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-7-1313


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  2. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
  3. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
  4. R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150–2158 (1997).
  5. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive quantum wells,” Opt. Lett. 22, 718–720 (1997).
  6. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
  7. Y. Ding, D. D. Nolte, and A. M. Weiner, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
  8. R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Meloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/optics express.
  9. R. Jones, N. P. Barry, S. C. W. Hyde, M. Tziraki, J. C. Dainty, P. M. W. French, D. D. Nolte, K. M. Kwolek, and M. R. Melloch, “Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices,” IEEE J. Sel. Top. Quantum Electron. 4, 360 (1998).
  10. W. S. Rabinovich, M. Bashkansky, S. R. Bowman, R. Mahon, and P. R. Battle, “Speckle photography using optically addressed multiple quantum well spatial light modulators,” Opt. Express 2, 449–453 (1998): http://epubs.osa.org/opticsexpress.
  11. I. Lahiri, L. J. Pyrak-Nolte, and D. D. Nolte, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
  12. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
  13. J. Glesk, K. I. Kang, and P. R. Prucnal, “Ultrafast photonic packet switching with optical control,” Opt. Express 1, 1997.
  14. W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent control of quantum dynamics: the dream is alive,” Science 259, 1581–1589 (1991).
  15. M. R. Fetterman, D. Goswami, D. Keusters, W. Yang, J.-K. Rhee, and S. Warren, “Ultrafast pulse shaping: amplification and characterization,” Opt. Express 3, 366–375 (1998); http://epubs.osa.org/opticsexpress.
  16. E. S. Maniloff, D. Vacar, D. W. McBranch, H.-L. Wang, B. R. Mattes, J. Gao, and A. J. Heeger, “Ultrafast holography using charge-transfer polymers,” Opt. Commun. 141, 243–246 (1997).
  17. J. S. Aitchinson, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in the 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
  18. G. R. Jacobovitz-Veselka, U. Keller, and M. T. Asom, “Broadband fast semiconductor saturable absorber,” Opt. Lett. 17, 1791–1793 (1992).
  19. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–313 (1995).
  20. Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
  21. M. Dinu, M. Melloch, and D. D. Nolte, “Electro-optic and photorefractive properties of long-period Fibonacci superlattices,” J. Appl. Phys. 79, 3787–3789 (1996).
  22. H. Chu and Y.-C. Chang, “Saddle-point excitons in solids and superlattices,” Phys. Rev. B 36, 2946–2949 (1987).
  23. M. Dinu, D. D. Nolte, and M. R. Melloch, “Electroabsorption spectroscopy of effective-mass AlxGa1−xAs/GaAs Fibonacci superlattices,” Phys. Rev. B 56, 1987–1995 (1997).
  24. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 1996).
  25. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited