OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1343–1348

Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides

Ali Saliminia, Tigran Galstian, Alain Villeneuve, Karine Le Foulgoc, and Kathleen Richardson  »View Author Affiliations


JOSA B, Vol. 17, Issue 8, pp. 1343-1348 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001343


View Full Text Article

Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature dependence of the spectral response of Bragg grating filters at 1550 nm, written in single-mode planar waveguides of As2S3 chalcogenide glasses, is presented. It was found that Bragg reflectance increases with temperature (corresponding to an increase as high as 4 dB of the transmission depth, from 20 °C to 50 °C), whereas the resonant wavelength shifts by ∼1 nm. The difference between temperature dependence of the structural properties for exposed and unexposed areas is thought to be responsible for the increase of refractive-index modulation depth. Two experimental techniques are used to further study the observed phenomena.

© 2000 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(120.6780) Instrumentation, measurement, and metrology : Temperature
(160.2750) Materials : Glass and other amorphous materials
(230.1480) Optical devices : Bragg reflectors
(230.7400) Optical devices : Waveguides, slab

Citation
Ali Saliminia, Tigran Galstian, Alain Villeneuve, Karine Le Foulgoc, and Kathleen Richardson, "Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides," J. Opt. Soc. Am. B 17, 1343-1348 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-8-1343


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. M. Andriesh, Yu. A. Bykovskii, E. P. Kolomeiko, A. V. Makovkin, V. L. Smirnov, and A. V. Shmal’ko, “Waveguide structures and functional elements of integrated optics systems based on volume holographic gratings in thin As2S3 films,” Sov. J. Quantum Electron. 7, 347–352 (1977).
  2. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
  3. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, É. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
  4. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1967 (1993); M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fiber using the transverse holographic method,” Electron. Lett. 32, 1611–1613 (1996).
  5. S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–16 (1999).
  6. H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65, 2925–2927 (1994).
  7. T. V. Galstyan, J.-F. Viens, A. Villeneuve, M. A. Duguay, and K. Richardson, “Combined relief and volume gratings in thin film As2S3 chalcogenide glass,” J. Lightwave Technol. 15, 1343–1347 (1997).
  8. S. Ramachandran, S. G. Bishop, J. P. Guo, and D. J. Brady, “Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening,” IEEE Photonics Technol. Lett. 8, 1041–1043 (1996).
  9. K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Cryst. Solids 198–200, 714–718 (1996).
  10. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15, 2946–2950 (1998).
  11. J.-F. Viens, A. Villeneuve, T. V. Galstyan, M. A. Duguay, K. A. Cerqua-Richardson, and S. Schwartz, “Photoinduced integrated optical devices in sulfide chalcogenide glasses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper JMH2–1.
  12. S. Ramachandran and S. G. Bishop, “Rapid thermal annealing of chalcogenide glasses for photodarkened waveguide and grating applications,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper BMG3–1.
  13. A. Ozols, O. Salminen, P. Riihola, and P. Monkkonen, “Nonlinear exposure dependence of the holographic recording and relaxational structure changes in amorphous As2S3 films,” J. Appl. Phys. 79, 3397–3402 (1996); O. Salminen, A. Ozols, P. Riihola, and P. Monkkonen, “Intensity threshold for holographic recording in amorphous As2S3 films,” J. Appl. Phys. 78, 718–722 (1995).
  14. A. Saliminia, A. Villeneuve, T. V. Galstian, S. LaRochelle, and K. Richardson, “First and second order Bragg gratings in single mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17, 837–842 (1999).
  15. A. Saliminia, K. Le Foulgoc, A. Villeneuve, T. V. Galstian, S. LaRochelle, and K. Richardson, “Photoinduced Bragg gratings in multilayer channel waveguides of chalcogenide glasses,” in Bragg Gratings, Photosensitivity, and Poling in Glass Wavelengths, E. J. Friebele, R. Kashyap, and T. Erdogan, eds., Vol. 33 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThD5.
  16. J. M. McKinley, K. A. Richardson, F. B. Hagedorn, and W. F. Cashion, “Characterization of candidate bonding glasses for composite IR window structures,” in Growth and Characterization of Materials for Infrared Detectors II, R. E. Longshore, J. W. Baars, and A. Kepten, eds., Proc. SPIE 2554, 213–221 (1995).
  17. V. K. Malinovsky, A. P. Sokolov, and V. G. Zhdanov, “Amplitude of photostructural changes in chalcogenide vitreous semiconductors,” Solid State Commun. 51, 647–650 (1984).
  18. K. Tanaka, “Reversible photostructural change: mechanisms, properties, and applications,” J. Non-Cryst. Solids 35–36, 1023–1034 (1980).
  19. Y. Utsugi and Y. Mizushima, “Photostructural change in the Urbach tail in chalcogenide glasses,” J. Appl. Phys. 51, 1773–1779 (1980).
  20. G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111–143 (1991).
  21. S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
  22. V. K. Tikhomirov and S. R. Elliott, “The anisotropic photorefractive effect in bulk As2S3 glass induced by polarized subgap laser light,” J. Phys.: Condens. Matter 7, 1737–1747 (1995).
  23. S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198–200, 669–674 (1996).
  24. V. K. Tikhomirov, G. J. Adrianssens, and S. R. Elliott, “Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: activation energies and their interpretation,” Phys. Rev. B 55, 660–663 (1997).
  25. V. K. Tikhomirov and S. R. Elliott, “Model for photoinduced anisotropy and its dark relaxation in chalcogenide glasses,” Phys. Rev. B 51, 5538–5541 (1995).
  26. K. Tanaka, “Free carrier generation in amorphous semiconductors by intense subgap excitation,” Appl. Phys. Lett. 73, 3435–3437 (1998).
  27. K. Tanaka and Y. Ohtsuka, “Measurement of photoinduced transformations in amorphous As2S3 films by optical waveguiding,” J. Appl. Phys. 49, 6132–6135 (1978).
  28. K. Tanaka and Y. Ohtsuka, “Composition dependence of photo-induced refractive index changes in amorphous As-S films,” Thin Solid Films 57, 59–64 (1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited