OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1349–1353

Poling of multilayer polymer films for modal dispersion phase matching of second-harmonic generation: effects of glass-transition temperature matching in different layers

Vincent Ricci, George I. Stegeman, and K. Pong Chan  »View Author Affiliations

JOSA B, Vol. 17, Issue 8, pp. 1349-1353 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The efficiency of multilayered poled polymer devices for parametric mixing depends critically on the creation of large electric fields in the nonlinear layer containing chromophores with large hyperpolarizabilities. The effect of changing the relative glass-transition temperatures of the polymer films constituting a four-layer waveguide has been investigated. An increase in the nonlinearity by a factor of 3.6, as measured by Maker fringes, has been found between an optimized and a nonoptimized combination. Correlation between the poling current density and the propagation losses has also been identified.

© 2000 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.4330) Materials : Nonlinear optical materials
(160.5470) Materials : Polymers

Vincent Ricci, George I. Stegeman, and K. Pong Chan, "Poling of multilayer polymer films for modal dispersion phase matching of second-harmonic generation: effects of glass-transition temperature matching in different layers," J. Opt. Soc. Am. B 17, 1349-1353 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2)-cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  2. G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989). [CrossRef]
  3. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkötter, R. Ricken, and W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides,” Opt. Lett. 24, 896–889 (1999). [CrossRef]
  4. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998). [CrossRef]
  5. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength converter based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999). [CrossRef]
  6. F. Pan, M. S. Wong, C. Bosshard, and P. Gunter, “Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4′-N-methyl-stilbazolium tosylate (DAST),” Adv. Mater. 8, 592–601 (1996). [CrossRef]
  7. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, and M. L. Schilling, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988). [CrossRef]
  8. H. Tang, J. M. Taboada, G. Cao, L. Li, and R. T. Chen, “Enhanced electro-optic coefficient of nonlinear optical polymer using liquid contact poling,” Appl. Phys. Lett. 70, 538–540 (1997). [CrossRef]
  9. G.-M. Yang, S. Bauer-Gogonea, G. M. Sessier, S. Bauer, W. Ren, W. Wirges, and R. Gerhards-Multhaupt, “Selective poling of nonlinear-optical polymer-films by means of a monoenergetic electron beam,” Appl. Phys. Lett. 64, 22–24 (1994). [CrossRef]
  10. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second harmonic generation in azo-dye polymers,” Opt. Lett. 12, 941–943 (1993). [CrossRef]
  11. W. Chalupczak, C. Fiorini, F. Chara, J.-M. Nunzi, and P. Raimond, “Efficient all-optical poling of an azo-dye copolymer using a low power laser,” Opt. Commun. 126, 103–107 (1996). [CrossRef]
  12. S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Pyroelectric investigation of the dipole orientation in nonlinear-optical polymers during and after poling,” J. Appl. Phys. 76, 2627–2635 (1994). [CrossRef]
  13. M. Jäger, G. Stegeman, M. C. Flipse, M. Diemeer, and G. Möhlmann, “Modal dispersion phase-matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1997). [CrossRef]
  14. A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996). [CrossRef]
  15. For example, many articles appeared in Electrical Conduction in Polymers, D. Seaner, ed. (Academic, New York, 1982).
  16. H. C. Ling, W. R. Holland, and H. M. Gordon, “Dc electrical behavior of polymers used in electrooptic devices,” J. Appl. Phys. 70, 6669–6673 (1991). [CrossRef]
  17. T. C. Kowalczyk, T. Z. Kosc, K. D. Singer, A. J. Beuhler, D. A. Wargowski, P. A. Cahill, C. H. Seager, M. B. Meinhardt, and S. Ermer, “Cross-linked polyimide electrooptic materials,” J. Appl. Phys. 78, 5876–5883 (1995). [CrossRef]
  18. R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15, 318–328 (1998). [CrossRef]
  19. C. C. Teng, M. A. Mortazavi, and G. K. Boudoughian, “Origin of the poling-induced optical loss in a nonlinear-optical polymeric waveguide,” Appl. Phys. Lett. 66, 667–669 (1995). [CrossRef]
  20. G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function,” Trans. Faraday Soc. 66, 80–85 (1970). [CrossRef]
  21. T. Koike and R. Tanaka, “Dielectric properties above the glass-transition for a series of epoxide prepolymers,” J. Appl. Polym. Sci. 42, 1333–1340 (1991). [CrossRef]
  22. D. Lei, J. Runt, A. Safari, and R. E. Newnham, “Dielectric properties of azo dye poly(methyl) methacrylate mixtures,” Macromolecules 20, 1797–1801 (1987). [CrossRef]
  23. R. Singh, V. S. Panwar, R. P. Tandon, and N. P. Gupta, “Low-frequency ac conduction and dielectric relaxation in vinyl chloride:vinyl acetate copolymers,” J. Appl. Phys. 72, 3410–3416 (1992). [CrossRef]
  24. F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Optical second harmonic generation studies of low temperature transitions in dye-doped polymers,” Nonlinear Opt. 6, 123–129 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited