OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1360–1365

Nonlinear distributed-feedback structures as passive optical limiters

Lukasz Brzozowski and Edward H. Sargent  »View Author Affiliations

JOSA B, Vol. 17, Issue 8, pp. 1360-1365 (2000)

View Full Text Article

Acrobat PDF (152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the intensity-dependent optical response of the passive optical limiters realized with distributed-feedback structures, which consist of alternating layers of materials possessing opposite Kerr nonlinearities. By elaborating an analytical model and employing numerical simulations, we explore device performance with respect to key requirements for passive optical-limiter deployment. We prove that the proposed limiting mechanism results in complete clamping of transmitted intensity to a sensor-safe limiting value, independent of incident intensity. We provide a direct analytical result of this limiting intensity in terms of structural and material parameters.

© 2000 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.1150) Optical devices : All-optical devices

Lukasz Brzozowski and Edward H. Sargent, "Nonlinear distributed-feedback structures as passive optical limiters," J. Opt. Soc. Am. B 17, 1360-1365 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. B. Lin, R. J. Tonucci, and A. J. Campillo, “Two-dimensional photonic bandgap optical limiters in the visible,” Opt. Lett. 23, 94–96 (1998).
  2. R. C. Hollins, “Overview of research on nonlinear optical limiters at DERA (Defence Evaluation & Research Agency),” in Photosensitive Optical Materials and Devices II, M. P. Andrews, ed., Proc. SPIE 3282, 2–8 (1988).
  3. T. Xia, D. J. Hagan, A. Dogariu, A. A. Said, and E. W. Van Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997).
  4. I. C. Khoo, M. Wood, and B. D. Guenther, “Nonlinear liquid crystal optical fiber array for all-optical switching/limiting,” in LEOS ’96 9th Annual Meeting (IEEE, Piscataway, N.J., 1996), Vol. 2, pp. 211–212.
  5. P. Miles, “Bottleneck optical pulse limiters revisited,” Appl. Opt. 38, 566–570 (1999).
  6. J. S. Werner, “Children’s sunglasses: caveat emptor,” Optom. Vision Sci. 68, 318–320 (1991).
  7. S. M. Luria, “Preferred density of sunglasses,” Am. J. Optom. Physiol. Opt. 61, 397–402 (1984).
  8. P. N. Prasad, “Design, ultrastructure, and dynamics of nonlinear optical effects in polymeric thin films,” in Electroactive Polymer Materials: State-of-the-Art Review of Conductive Polymers, A. Wirsén, ed. (Technomic, Lancaster, Pa., 1987), pp. 41–67.
  9. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  10. N. S. Pate, L. Hall, L. Katherine, and K. A. Raushenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 27, 2831–2842 (1998).
  11. P. Tran, “All-optical switching with a nonlinear chiral photonic bandgap structure,” J. Opt. Soc. Am. B 16, 70–73 (1999).
  12. M. Scolara, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
  13. R. Rangel-Rojo, S. Yamada, S. Matsuda, and H. D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998).
  14. G. L. Wood, W. W. Clark III, M. J. Miller, G. J. Salamo, and E. J. Sharp, “Evaluation of passive optical limiters and switches,” in Materials for Optical Switches, Isolators, and Limiters, M. J. Soileau, ed., Proc. SPIE 1105, 154–181 (1989).
  15. R. Bozio, M. Meneghetti, R. Signorini, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, M. Guglielmi, “Optical limiting of fullerene derivatives embedded in sol-gel materials,” in Photoactive Organic Materials Science and Applications, F. Kajzer, ed., NATO ASI Ser. B 572, 159–174 (1996).
  16. J. A. Hermann, P. B. Chapple, J. Staromlynska, and P. J. Wilson, “Design criteria for optical power limiters,” in Nonlinear Optical Materials for Switching and Limiting, M. J. Soileau, ed., Proc. SPIE 2229, 167–178 (1994).
  17. S. John, “The localization of light,” in Photonics Band Gaps and Localization, C. M. Soukoulis, ed. (Plenum, New York, 1993), pp. 1–22.
  18. K. Ishizu, T. Ikemoto, and A. Ichimure, “Architecture of polymeric superstructures formed by locking cubic lattices of core-shell polymer microspheres,” Polymer 39, 449–454 (1998).
  19. K. Ishizu, F. Naruse, and R. Saito, “The aggregation behavior of core-shell type polymer microspheres,” Polymer 35, 2329–2334 (1994).
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  21. G. I. Stegeman, C. Liao, and H. G. Winful, “Distributed feedback bistability in channel waveguides,” Optical Bistability 2, C. M. Bowden, H. M. Gibbs, and S. L. McCall, eds. (Plenum, New York, 1983), pp. 389–396.
  22. H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers (CRC, Boca Raton, Fla., 1997).
  23. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  24. A. Yarif and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  25. J. He and M. Cada, “Combined distributed feedback and Fabry–Perot structures with a phase-matching layer for bistable devices,” Appl. Phys. Lett. 61, 2150–2152 (1992).
  26. M. Bertolotti, P. Masciulli, P. Ranieri, and C. Sibilia, “Optical bistability in nonlinear Cantor corrugated waveguide,” J. Opt. Soc. Am. B 13, 1517–1525 (1996).
  27. L. Caleo, C. Sibilia, P. Masciulli, and M. Bertlotti, “Nonlinear-optical filters based on the cascading second-order effect,” J. Opt. Soc. Am. B 14, 2315–2324 (1997).
  28. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structure,” Appl. Phys. Lett. 35, 379–381 (1979).
  29. H. G. Winful and G. D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).
  30. C.-X. Shi, “Optical bistability in reflective fiber grating,” IEEE J. Quantum Electron. 31, 2037–2043 (1995).
  31. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, 1985).
  32. S. Dubovitsky and W. H. Steier, “Analysis of optical bistability in a nonlinear coupled resonator,” IEEE J. Quantum Electron. 28, 585–589 (1992).
  33. Z. X. Zhang, W. Qiu, E. Y. B. Pun, P. S. Chang, and Y. Q. Shen, “Doped polymer films with high nonlinear refractive indices,” Electron. Lett. 32, 129–130 (1996).
  34. C. R. Mendoca, M. M. Costa, J. A. Giacometti, F. D. Nunes, and S. C. Zilio, “Nonlinear refractive indices of polyesterene films doped with azobenzene dye Disperse Red 1,” Electron. Lett. 34, 116–117 (1998).
  35. E. W. Van Stryland and M. Shei-Bahae, “Z-scan,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M. G. Kuzyk and C. W. Dirk, eds. (Marcel Dekker, New York, 1998), pp. 655–692.
  36. F. J. Aranda, C. F. Cheng, D. V. G. L. N. Rao, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “Two-photon absorption in polybenzine,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. Van Stryland, and M. Khoshnevisan, eds. (Materials Research Society, Pittsburgh, Pa., 1994), pp. 185–194.
  37. P. A. Fleiz, R. L. Sutherland, and T. J. Bunning, “Z-scan measurements of molten diphenylbuandiene in the isotropic liquid state,” in Materials for Optical Limiting, R. Crane, K. Lewis, E. Van Stryland, and M. Khoshnevisan, eds. (Materials Research Society, Pittsburgh Pa., 1994), pp. 211–216.
  38. M. Brunel, F. Chaput, S. A. Vindogradov, B. Campagne, M. Canva, J-P. Boilot, and A. Brun, “Reverse saturable absorption in organically-doped xerogels,” in Materials for Optical Limiting II, R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, and J. Perry, eds. (Materials Research Society, Pittsburgh, Pa., 1997), pp. 97–102.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited