OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1420–1437

Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion

G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer  »View Author Affiliations


JOSA B, Vol. 17, Issue 8, pp. 1420-1437 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001420


View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical treatment of group-velocity dispersion and higher-order dispersion effects on the second-harmonic-generation (SHG) process with longitudinally nonuniform quasi-phase-matching (QPM) gratings is presented. We show how these dispersion terms can be accounted for in the design of a QPM-SHG pulse shaper. Our numerical simulation results show that, if the proper dispersion correction is included in the QPM grating design, one can generate sub-10-fs transform-limited pulses at 400 nm by doubling the output of a Ti:sapphire oscillator.

© 2000 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping
(320.7080) Ultrafast optics : Ultrafast devices
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Citation
G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, "Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion," J. Opt. Soc. Am. B 17, 1420-1437 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-8-1420


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12, 7–9 (1968). [CrossRef]
  2. W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 284–290 (1969). [CrossRef]
  3. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space–time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).
  4. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, Melville, N.Y., 1992).
  5. A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983). [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  7. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse second harmonic generation. I. Transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1704–1712 (1995). [CrossRef]
  8. A. Knoesen, E. Sidick, and A. Dienes, in Novel Optical Materials and Applications, I.-C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997).
  9. J. A. Armstrong, N. Bloembergen, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  10. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  11. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997). [CrossRef]
  12. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998). [CrossRef]
  13. A. Galvanauskas, D. Harter, M. A. Arbore, M. H. Chou, and M. M. Fejer, “Chirped-pulse-amplification circuits for fiber amplifiers, based on chirped-period quasi-phase-matching gratings,” Opt. Lett. 23, 1695–1697 (1998). [CrossRef]
  14. A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, “Microlaser pumped, engineerable bandwidth parametric chirped-pulse amplifier using electric-field-poled LiNbO3,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.
  15. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “Low-noise amplification of high-power pulses in multimode fibers,” IEEE Photon. Technol. Lett. 11, 650–652 (1999). [CrossRef]
  16. P. Loza-Alvarez, D. T. Reid, P. Faller, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Simultaneous femtosecond-pulse compression and second-harmonic generation in aperiodically poled KTiOPO4,” Opt. Lett. 24, 1071–1073 (1999). [CrossRef]
  17. P. Loza-Alvarez, D. T. Reid, P. Faller, M. Ebrahimzadeh, and W. Sibbett, “Simultaneous second-harmonic generation and femtosecond-pulse compression in aperiodically poled KTiOPO4 with a RbTiOAsO4-based optical parametric oscillator,” J. Opt. Soc. Am. B 16, 1553–1560 (1999). [CrossRef]
  18. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997). [CrossRef] [PubMed]
  19. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000). [CrossRef]
  20. M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994). [CrossRef]
  21. P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995). [CrossRef]
  22. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixings in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997). [CrossRef] [PubMed]
  23. G. Imeshev, M. A. Arbore, A. Galvanauskas, and M. M. Fejer, “Numerical simulations of ultrafast SHG with chirped QPM gratings in the pump-depleted regime,” Center for Nonlinear Optical Materials annual report (Stanford University, Stanford, Calif., 1997).
  24. V. G. Dmitriev and S. G. Grechin, “Multi frequency laser radiation harmonics generation in nonlinear crystals with regular domain structure,” in ICONO ’98: Nonlinear Optical Phenomena and Coherent Optics in Information Technologies, S. S. Chesnokov, V. P. Kandidov, and N. I. Koroteev, eds., Proc. SPIE 3733, 228–236 (1999).
  25. S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phasematched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999). [CrossRef]
  26. M. S. Webb, D. Eimerl, and S. P. Velsko, “Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP,” J. Opt. Soc. Am. B 9, 1118–1127 (1992). [CrossRef]
  27. S. Lin, B. Wu, F. Xie, and C. Chen, “Phase matching retracing behavior for second harmonic generation in LiB3O5 crystal,” J. Appl. Phys. 73, 1029–1034 (1993). [CrossRef]
  28. S. K. Kurtz, in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975).
  29. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).
  30. D. Zwillinger, Handbook of Integration (Jones and Bartlett, Sudbury, Mass., 1992).
  31. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse second harmonic generation. II. Non-transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1713–1722 (1995). [CrossRef]
  32. M. Frigo and S. G. Johnson, “FFTW: an adaptive software architecture for the FFT,” IEEE Trans. Acoust. Speech Signal Process. 3, 1381–1384 (1998).
  33. The FFTW software is available for downloading at http://www.fftw.org.
  34. J.-P. Meyn, Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (personal communication, 1999).
  35. J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214–1216 (1997). [CrossRef] [PubMed]
  36. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  37. L. K. Cheng, L. T. Cheng, J. Galperin, P. A. Morris Hotsenpiller, and J. D. Bierlein, “Crystal growth and characterization of KiTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited