OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1438–1442

Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab

Reginald K. Lee, Yong Xu, and Amnon Yariv  »View Author Affiliations


JOSA B, Vol. 17, Issue 8, pp. 1438-1442 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001438


View Full Text Article

Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-dimensional photonic crystal patterned into a thin dielectric slab waveguide is shown to alter drastically the lifetime of spontaneous emission as well as the radiation pattern. This means that although the light extraction efficiency can be greatly enhanced, inhibited spontaneous emission within the photonic bandgap can result in low power output from such a structure. Strongly inhibited emission is found within the photonic bandgap as well as enhanced emission into the conduction band modes for certain geometries. Coupled with enhanced extraction efficiency in the photonic conduction band, this results in the possibility of a structure with increased total power efficiency.

© 2000 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(130.3130) Integrated optics : Integrated optics materials
(230.3670) Optical devices : Light-emitting diodes
(230.3990) Optical devices : Micro-optical devices
(270.5580) Quantum optics : Quantum electrodynamics

Citation
Reginald K. Lee, Yong Xu, and Amnon Yariv, "Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab," J. Opt. Soc. Am. B 17, 1438-1442 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-8-1438


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  5. I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, “30-percent external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
  6. E. Schubert, Y. Wang, A. Cho, L. Tu, and G. Zidzik, “Resonant cavity light-emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
  7. E. Yablonovitch and T. Gmitter, “Photonic band structure: the face-centered-cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
  8. J. Martorell and N. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1800 (1990).
  9. E. Petrov, V. Bogomolov, I. Kalosha, and S. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
  10. S. Gaponenko, V. Bogomolov, E. Petrov, A. Kapitonov, D. Yarotsky, I. Kalosha, A. Eychmueller, A. Rogach, J. McGilp, U. Woggon, and F. Gindele, “Spontaneous emission of dye molecules, semiconductor nanocrystals, and rare-earth ions in opal-based photonic crystals,” J. Lightwave Technol. 17, 2128–2137 (1999).
  11. S. Fan, P. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
  12. T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure esti-mated using a new effective-index model,” IEEE J. Quantum Electron. 34, 2308–2313 (1998).
  13. X. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal,” IEEE J. Quantum Electron. 32, 535–542 (1996).
  14. S. John and K. Busch, “Photonic bandgap formation and tunability in certain self-organizing systems,” J. Lightwave Technol. 17, 1931–1943 (1999).
  15. Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16, 465–474 (1999).
  16. J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
  17. Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, Art. No. 33807 (2000).
  18. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
  19. C. Furse and O. Gandhi, “Why the DFT is faster than the FFT for FDTD time-to-frequency domain conversions,” IEEE Microwave Guid. Wave Lett. 5, 326–328 (1995).
  20. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
  21. C. Cheng, V. Arbet-Engels, E. Yablonovitch, and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996).
  22. A. Scherer, O. Painter, B. D’Urso, R. Lee, and A. Yariv, “InGaAsP photonic band gap crystal membrane microresonators,” J. Vac. Sci. Technol. B 16, 3906–3910 (1998).
  23. M. Boroditsky, R. Vrijen, T. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999).
  24. T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A. Matsutani, T. Miyamoto, F. Koyama, and K. Iga, “Strong enhancement of light extraction efficiency in GaInAsP 2-D-arranged microcolumns,” J. Lightwave Technol. 17, 2113–2120 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited