OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1548–1553

Spatial light modulator with output-sign control and self-protective diffraction limiting

Pengfei Wu, D. V. G. L. N. Rao, Brian R. Kimball, Masato Nakashima, and Barry S. DeCristofano  »View Author Affiliations

JOSA B, Vol. 17, Issue 9, pp. 1548-1553 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The characteristics of spatial light modulation (SLM) based on a biphoton holographic grating with azobenzene films are studied theoretically and experimentally. The mechanism of SLM originates from trans↔cis isomerization of the azobenzene molecules induced by two-colored lights. Theoretical results indicate that the SLM output replica can change its sign by varying the intensity of the incoherent light or blocking it. An interesting feature of this SLM model is that it provides a method to limit diffraction efficiencies at high input intensities, which protects photosensors from damage. When an azobenzene-doped polymer film is used, incoherent-to-coherent image conversion and a sign change of a replica of the output image are observed in the experiment.

© 2000 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2890) Holography : Holographic optical elements
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(200.0200) Optics in computing : Optics in computing
(230.1150) Optical devices : All-optical devices
(230.6120) Optical devices : Spatial light modulators

Pengfei Wu, D. V. G. L. N. Rao, Brian R. Kimball, Masato Nakashima, and Barry S. DeCristofano, "Spatial light modulator with output-sign control and self-protective diffraction limiting," J. Opt. Soc. Am. B 17, 1548-1553 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Poon, R. Juday, and T. Hara, “Spatial light modulators—research, development, and applications: introduction to the feature issue,” Appl. Opt. 37, 7471 (1998). [CrossRef]
  2. F. J. Aranda, R. Garimella, N. F. McCarthy, D. Narayana Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, and J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995). [CrossRef]
  3. Y. Iino and P. Davis, “Switching of self-organized patterns in mutually modulating liquid crystal devices for beam control,” J. Appl. Phys. 85, 3399–3405 (1999). [CrossRef]
  4. J. D. Margerum, J. Nimoy, and S.-Y. Wong, “Reversible ultraviolet imaging with liquid crystals,” Appl. Phys. Lett. 17, 51–53 (1970). [CrossRef]
  5. Y. Shi, D. Psaltis, A. Marrakchi, and A. R. Tanguay, Jr., “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3667 (1983). [CrossRef] [PubMed]
  6. E. J. Sharp, G. L. Wood, W. W. Clark III, G. J. Salamo, and R. R. Neurgaonkar, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992). [CrossRef] [PubMed]
  7. A. Marrakchi, “Photorefractive spatial light modulation based on enhanced self-diffraction in sillenite crystals,” Opt. Lett. 13, 654–656 (1988). [CrossRef] [PubMed]
  8. E. Voit and P. Günter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals,” Opt. Lett. 12, 769–771 (1987). [CrossRef] [PubMed]
  9. C.-C. Sun, M.-W. Chang, and K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter by using an anisotropic strong volume hologram,” Opt. Lett. 18, 655–657 (1993). [CrossRef] [PubMed]
  10. V. Weiss, A. A. Friesem, and V. A. Krongauz, “Holographic recording and all-optical modulation in photochromic polymers,” Opt. Lett. 18, 1089–1091 (1993). [CrossRef] [PubMed]
  11. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993). [CrossRef] [PubMed]
  12. C. Egami, Y. Suzuki, O. Sugihara, N. Okamoto, H. Fujimura, K. Nakagawa, and H. Fujiwara, “Third-order resonant optical nonlinearity from trans–cis photoisomerization of an azo dye in a rigid matrix,” Appl. Phys. B 64, 471–478 (1997). [CrossRef]
  13. R. Rangel-Rojo, S. Yamada, H. Matsuda, and D. Yankelevich, “Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film,” Appl. Phys. Lett. 72, 1021–1023 (1998). [CrossRef]
  14. D. Y. Kim, L. Li, R. J. Jeng, J. Kumar, M. A. Fiddy, and S. K. Tripathy, “Nonlinear optical photoresponsive polymer for reversible optical data storage,” in Organic and Biological Optoelectronics, P. M. Rentzepis, ed., Proc. SPIE 1853, 23–28 (1993). [CrossRef]
  15. S. Brasselet and J. Zyss, “Control of the polarization dependence of optically poled nonlinear polymer films,” Opt. Lett. 22, 1464–1466 (1997). [CrossRef]
  16. X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629–3931 (1996). [CrossRef]
  17. I. V. Tomov, B. VanWonterghem, A. S. Dvornikov, T. E. Dutton, and P. M. Rentzepis, “Degenerate four-wave mixing in azo-dye-doped polymer films,” J. Opt. Soc. Am. B 8, 1477–1482 (1991). [CrossRef]
  18. B. Volodin, K. Meerholz, Sandalphon, B. Kippelen, and N. Peyghambarian, “Azo dye-doped photorefractive polymers,” in Advanced Photonics Materials for Information Technology, S. Etemad, ed., Proc. SPIE 2144, 72–81 (1994). [CrossRef]
  19. C. Fiorini, F. Charra, J. Nunzi, and P. Raimond, “Quasi-permanent all-optical encoding of noncentrosymmetry in azo-dye polymers,” J. Opt. Soc. Am. B 14, 1984–2003 (1997). [CrossRef]
  20. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second-harmonic generation in azo-dye polymers,” Opt. Lett. 18, 941–943 (1993). [CrossRef] [PubMed]
  21. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature 383, 505–508 (1996). [CrossRef]
  22. Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).
  23. J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, and S. Tripathy, “Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998). [CrossRef]
  24. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Spatial light modulation with an azobenzene-doped polymer by use of biphotonic holography,” Opt. Lett. 24, 841–843 (1999). [CrossRef]
  25. J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, Fla., 1990), pp. 120–141.
  26. H. Gömer, H. Gruen, and D. Schulte-Frohlinde, “Laser flash photolysis study of substituted azobenzenes. Evidence for a triplet state in viscous media,” J. Phys. Chem. 84, 3031–3039 (1980). [CrossRef]
  27. C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Macromol. Chem. 179, 2489–2506 (1978). [CrossRef]
  28. M. Guéna, Z. Y. Wu, M. L’Her, A. Pondaven, and C. Cadiou, “Grey scale memory in an optically addressed spatial light modulator with a Lu(Pc)2 doped layer,” Appl. Phys. Lett. 72, 765–767 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited