OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1599–1606

Doppler-free two-photon spectroscopy in the vacuum ultraviolet: helium 1 1S–2 1S transition

S. D. Bergeson, K. G. H. Baldwin, T. B. Lucatorto, T. J. McIlrath, C. H. Cheng, and E. E. Eyler  »View Author Affiliations


JOSA B, Vol. 17, Issue 9, pp. 1599-1606 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001599


View Full Text Article

Acrobat PDF (284 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe techniques for laser spectroscopy in the vacuum-UV (VUV) spectral region that combine high spectral resolution with high absolute accuracy. A nearly transform-limited nanosecond laser source at 120 nm is constructed with difference-frequency mixing. This source is used to perform the first, to our knowledge, Doppler-free VUV measurement. We measure the inherently narrow 11S–21S two-photon transition in atomic helium with a spectral resolution of 7 parts in 108 (180 MHz), the narrowest line width so far observed at such short wavelengths. Careful measurements of optical phase perturbations allow us to determine the absolute frequency of the line center to a fractional uncertainty of 1 part in 108. Improvements now in progress should reduce this uncertainty to 2 parts in 109.

© 2000 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Citation
S. D. Bergeson, K. G. H. Baldwin, T. B. Lucatorto, T. J. McIlrath, C. H. Cheng, and E. E. Eyler, "Doppler-free two-photon spectroscopy in the vacuum ultraviolet: helium 1 1S–2 1S transition," J. Opt. Soc. Am. B 17, 1599-1606 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-9-1599


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Huber, B. Gross, M. Weitz, and T. W. Hänsch, “High-resolution spectroscopy of the 1S–2S transition in atomic hydrogen,” Phys. Rev. A 59, 1844–1851 (1999).
  2. B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S–8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
  3. K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. König, and T. W. Hänsch, “Theory of the energy levels and precise two-photon spectroscopy of atomic hydrogen and deuterium,” J. Phys. B 29, 177–195 (1996).
  4. K. Pachucki, “Quantum electrodynamics effects on singlet S-states of helium of order mα6,” J. Phys. B 31, 3547–3556 (1998).
  5. P. J. Mohr, “Quantum electrodynamics calculations,” in The Spectrum of Hydrogen: Advances, G. W. Series, ed. (World Scientific, New York, 1988), p. 111.
  6. K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “First laser excitation of the 4He 11S–21P resonance line at 58 nm,” Phys. Rev. Lett. 71, 1690–1692 (1993).
  7. K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Precision measurements in helium at 58 nm: ground state Lamb shift and the 11S–21P transition isotope shift,” Phys. Rev. Lett. 76, 1216–1219 (1996).
  8. K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Lamb shift measurement in the 11S ground state of helium,” Phys. Rev. A 55, 1866–1884 (1997).
  9. S. D. Bergeson, A. Balakrishnan, K. G. H. Baldwin, T. B. Lucatorto, J. P. Marangos, T. J. McIlrath, T. R. O’Brian, S. L. Rolston, C. J. Sansonetti, J. Wen, N. Westbrook, C. H. Cheng, and E. E. Eyler, “Measurement of the He ground state Lamb shift via the two-photon 11S–21S transition,” Phys. Rev. Lett. 80, 3475–3478 (1998).
  10. S. D. Bergeson, A. Balakrishnan, K. G. H. Baldwin, T. B. Lucatorto, J. P. Marangos, T. J. McIlrath, T. R. O’Brian, S. L. Rolston, C. J. Sansonetti, J. Wen, N. Westbrook, C. H. Cheng, and E. E. Eyler, “Precision spectroscopy in He as a test of QED,” Phys. Scr. T 83, 76–82 (1999).
  11. G. W. F. Drake, G. A. Victor, and A. Dalgarno, “Two-photon decay of the singlet and triplet metastable states of helium-like ions,” Phys. Rev. 180, 25–32 (1969).
  12. R. S. Van Dyck, Jr., C. E. Johnson, and H. A. Shugart, “Radiative lifetime of the 21S0 metastable state of helium,” Phys. Rev. A 4, 1327–1336 (1971).
  13. V. Jacobs, “Two-photon decay rate of the 21S0 metastable state of helium,” Phys. Rev. A 4, 939–944 (1971).
  14. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83, 3828–3831 (1999).
  15. K. G. H. Baldwin, J. P. Marangos, and D. D. Burgess, “Application of coherent VUV radiation to the measurement of Lyman-α absorption lineshapes in a dense Z-pinch plasma,” J. Phys. D 17, L169–L173 (1984).
  16. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7, 1254–1263 (1990).
  17. N. Melikechi, S. Gangopadhyay, and E. E. Eyler, “Generation of vacuum ultraviolet radiation for precision laser spectroscopy,” Appl. Opt. 36, 7776–7778 (1997).
  18. P. M. Dooley, B. R. Lewis, S. T. Gibson, K. G. H. Baldwin, P. C. Cosby, J. L. Price, R. A. Copeland, T. G. Slanger, A. P. Thorne, K. Yoshino, and J. E. Murray, “A comparative high-resolution study of predissociation linewidths in the Schumann–Runge bands of O2,” J. Chem. Phys. 109, 3856–3867 (1998).
  19. B. R. Lewis, S. T. Gibson, K. G. H. Baldwin, and J. H. Carver, “Vacuum-ultraviolet absorption linewidth measurement using high-order anti-Stokes Raman-shifted radiation,” J. Opt. Soc. Am. B 6, 1200–1208 (1989).
  20. C. R. Vidal, “Coherent VUV sources for high resolution spectroscopy,” Appl. Opt. 19, 3897–3903 (1980).
  21. W. Jamroz and B. P. Stoicheff, “Generation of tunable coherent vacuum ultraviolet radiation,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), p. 325.
  22. R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).
  23. C. R. Vidal, “Vacuum ultraviolet laser spectroscopy of small molecules,” Adv. At. Mol. Phys. 23, 1–35 (1988).
  24. M. N. R. Ashfold and J. D. Prince, “Multiphoton processes in molecular gases,” Contemp. Phys. 29, 129 (1988).
  25. A. Lago, “Generation of VUV/XUV laser light,” AIP Conf. Proc. 225, 29–34 (1991).
  26. J. W. Hepburn, “Applications of coherent vacuum ultraviolet to photofragment and photoionization spectroscopy,” in Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and Clusters, C. Y. Ng, ed. (World Scientific, Singapore, 1991), Chap. 9, pp. 435–485.
  27. K. Yamanouchi and S. Tsuchiya, “Tunable vacuum ultraviolet laser spectroscopy: excited state dynamics of jet-cooled molecules and van der Waals complexes,” J. Phys. B 28, 133–165 (1995).
  28. R. Hilbig and R. Wallenstein, “Narrowband tunable VUV radiation generated by nonresonant sum- and difference-frequency mixing in xenon and krypton,” Appl. Opt. 21, 913–917 (1982).
  29. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes,” IEEE J. Quantum Electron. QE-11, 287–296 (1975).
  30. K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, and M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
  31. C. E. Moore, “Atomic energy levels,” National Standard Reference Data System–National Bureau of Standards 35 (U.S. Government Printing Office, Washington, D.C., 1971), Vol. 1.
  32. S. Gangopadhyay, N. Melikechi, and E. E. Eyler, “Optical phase perturbations in nanosecond pulsed amplification and second-harmonic generation,” J. Opt. Soc. Am. B 11, 231–241 (1994).
  33. J. Samson, Vacuum Ultraviolet Techniques (Wiley, New York, 1967).
  34. T. A. Miller, “Chemistry and chemical intermediates in supersonic free jet expansions,” Science 223, 545–553 (1984).
  35. T. N. Chang and T. K. Fang, “Effect of positive-energy orbitals on the photoionization cross sections and oscillator strengths of He and divalent atoms,” Phys. Rev. A 52, 2638–2644 (1995).
  36. M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4923 (1992).
  37. N. Melikechi, S. Gangopadhyay, and E. E. Eyler, “Phase dynamics in nanosecond pulsed dye laser amplification,” J. Opt. Soc. Am. B 11, 2402–2411 (1994).
  38. K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst, “Lamb shift measurement in the 11S ground state of helium,” Phys. Rev. A 55, 1866–1884 (1997).
  39. Acton Research Corporation, aluminum mirror with a MgF2 coating.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited