OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1626–1635

Femtosecond self-focusing dynamics measured by three-dimensional phase-retrieval cross correlation

Tai-Wei Yau, Chau-Hwang Lee, and Jyhpyng Wang  »View Author Affiliations

JOSA B, Vol. 17, Issue 9, pp. 1626-1635 (2000)

View Full Text Article

Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use a phase-retrieval cross-correlation technique to analyze the spatiotemporal field evolution of self-focused ultrashort pulses. The technique features a new phase-retrieval algorithm based on functional differentiation. Its sensitivity, rapid convergence, and temporal nonreciprocality enable reliable three-dimensional waveform reconstruction. At less than the critical power, the experiments verify conventional description of self-focusing and give a direct proof of the Kerr-lens mode-locking mechanism. In contrast, for pulses with peak power much more than the critical power, nearly uniform self-focusing and quasi-stable single-filament trapping to a universal beam diameter were observed. The trapping can be explained by the saturation of the nonlinear refractive-index change at Δn∼7×10−5. The saturation is verified by an independent cross-polarization modulation measurement.

© 2000 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.5950) Physical optics : Self-focusing
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Tai-Wei Yau, Chau-Hwang Lee, and Jyhpyng Wang, "Femtosecond self-focusing dynamics measured by three-dimensional phase-retrieval cross correlation," J. Opt. Soc. Am. B 17, 1626-1635 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).
  2. T. R. Gosnell, A. J. Taylor, and D. P. Greene, “Supercontinuum generation at 248 nm using high-pressure gases,” Opt. Lett. 15, 130–132 (1990).
  3. M. K. Reed, M. K. Steiner-Shepard, and D. K. Negus, “Widely tunable femtosecond optical parametric amplifier at 250 kHz with a Ti:sapphire regenerative amplifier,” Opt. Lett. 19, 1855–1857 (1994).
  4. H. Nishioka, W. Odajima, K. Ueda, and H. Takuma, “Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses,” Opt. Lett. 20, 2505–2507 (1995).
  5. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
  6. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
  7. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
  8. H. R. Lange, G. Grillon, J.-F. Ripoche, M. A. Franco, B. Lamouroux, B. S. Prade, A. Mysyrowicz, E. T. J. Nibbering, and A. Chiron, “Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?” Opt. Lett. 23, 120–122 (1998).
  9. E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett. 22, 1817–1819 (1997).
  10. X. Liu and G. Mourou, “Ultrashort laser pulses tackle precision machining,” Laser Focus World (August 1997), pp. 101–118.
  11. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
  12. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
  13. A. Y. Naumov, C. Przygodzki, X. Zhu, and P. B. Corkum, in “Microstructuring with femtosecond laser inside silica glasses,” Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington D.C., 1999), paper CThC2.
  14. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–387 (1974).
  15. Y. R. Shen, “Self-focusing: experimental,” Prog. Quantum Electron. 4, 1–34 (1975), and the references therein.
  16. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
  17. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, and J. G. Fujimoto, “Self-focusing-induced saturable loss for laser mode locking,” Opt. Lett. 17, 511–513 (1992).
  18. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
  19. S. Chi and Q. Guo, “Vector theory of self-focusing of an optical beam in Kerr media,” Opt. Lett. 20, 1598–1600 (1995).
  20. J. M. Soto-Crespo and N. Akhmediev, “Description of the self-focusing and collapse effects by modified nonlinear Schrödinger equation,” Opt. Commun. 101, 223–230 (1993).
  21. M. D. Feit and J. A. Fleck, Jr., “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B 5, 633–640 (1988).
  22. G. Fibich, “Small beam nonparaxiality arrests self-focusing of optical beams,” Phys. Rev. Lett. 76, 4356–4359 (1996).
  23. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
  24. J. Wang, T.-W. Yau, and C.-H. Lee, “Time-resolved study on self-focusing of ultrashort pulses,” in The 36th Seminar on Science and Technology–Femtosecond Science and Technology (Interchange Asociation, Tokyo, 1998), pp. 72–82.
  25. T.-W. Yau, C.-H. Lee, and J. Wang, “Spatial-temporal field distribution of self-focused femtosecond pulses,” in Ultrafast Phenomena XI (Springer, Berlin, 1998), pp. 106–108.
  26. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11, 2206–2215 (1994).
  27. S. Linden, H. Giessen, and J. Kuhl, “XFROG: new method for amplitude and phase characterization of ultraweak ultrashort pulses,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThW5.
  28. S. Linden, H. Giessen, and J. Kuhl, “XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998).
  29. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, “Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,” Opt. Lett. 24, 1774–1776 (1999).
  30. J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, “Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,” Opt. Lett. 18, 1946–1948 (1993).
  31. K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections,” Opt. Lett. 19, 2152–2154 (1994).
  32. G. Szabó, Z. Bor, and A. Müller, “Phase-sensitive single-pulse autocorrelator for ultrashort laser pulses,” Opt. Lett. 13, 746–748 (1988).
  33. J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamoniaux, and A. Antonetti, “Frequency-domain interferometor for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
  34. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
  35. M. J. Weber, D. Milam, and W. L. Smith, “Nonlinear refractive index of glasses and crystals,” Opt. Eng. 17, 463–469 (1978).
  36. L. Spinelli, B. Couillaud, N. Goldblatt, and D. K. Negus, “Starting and generation of sub-100-fs pulses in Ti:Al2O3 by self-focusing,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CPDP7.
  37. F. Salin, J. Squier, and M. Piché, “Mode locking of Ti:Al2O3 lasers and self-focusing: a Gaussian approximation,” Opt. Lett. 16, 1674–1676 (1991).
  38. S. Chen and J. Wang, “Self-starting issues of passive self-focusing mode locking,” Opt. Lett. 16, 1689–1691 (1991).
  39. G. Cerullo, S. De Silvestri, and V. Magni, “Self-starting Kerr-lens mode locking of a Ti:sapphire laser,” Opt. Lett. 19, 1040–1042 (1994).
  40. M. J. P. Dymott and A. I. Ferguson, “Self-mode-locked diode-pumped Cr:LiSAF laser,” Opt. Lett. 19, 1988–1990 (1994).
  41. V. Magni, G. Cerullo, and S. De Silvestri, “Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers,” Opt. Commun. 101, 365–370 (1993).
  42. Y.-Y. Hwang, Y.-H. Kuo, C.-H. Lee, and J. Wang, in “Beam-profile evolution of trapped femtosecond pulses in Kerr media,” Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CTuP22.
  43. S. Henz and J. Herrmann, “Two-dimensional spatial optical solitons in bulk Kerr media stabilized by self-induced multiphoton ionization: variational approach,” Phys. Rev. E 53, 4092–4097 (1996).
  44. S. Henz and J. Herrmann, “Self-channeling and pulse shortening of femtosecond pulses in multiphoton-ionized dispersive dielectric solids,” Phys. Rev. A 59, 2528–2531 (1999).
  45. W. L. Smith, J. H. Bechtel, and N. Bloembergen, “Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses,” Phys. Rev. B 12, 706–714 (1975).
  46. J. H. Marburger and E. Dawes, “Dynamical formation of a small-scale filament,” Phys. Rev. Lett. 21, 556–558 (1968).
  47. W. G. Wagner, H. A. Haus, and J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256–266 (1968).
  48. E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862–868 (1969).
  49. Y. Chen, “Self-trapped light in saturable nonlinear media,” Opt. Lett. 16, 4–6 (1991).
  50. J. M. Soto-Crespo, D. R. Heatley, E. M. Wright, and N. N. Akhmediev, “Stability of the higher-bound states in a saturable self-focusing medium,” Phys. Rev. A 44, 636–644 (1991).
  51. S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296–2302 (1991); “Propagation of optical beams and the properties of two-dimensional spatial solitons in media with a local saturable nonlinear refractive index,” J. Opt. Soc. Am. B 14, 1795–1806 (1997).
  52. J. M. Soto-Crespo, E. M. Wright, and N. N. Akhmediev, “Recurrence and azimuthal-symmetry breaking of a cylindrical Gaussian beam in a saturable self-focusing medium,” Phys. Rev. A 45, 3168–3175 (1992).
  53. W. L. Smith and J. H. Bechtel, “Laser-induced breakdown and nonlinear refractive index measurements in phosphate glasses, lanthanum beryllate, and Al2O3,” Appl. Phys. Lett. 28, 606–607 (1976).
  54. Y. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), Sect. 3.4.
  55. A. W. Snyder, D. J. Mitchell, L. Poladian, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 16, 21–23 (1991).
  56. P. Chernev and V. Petrov, “Self-focusing of light pulses in the presence of normal group-velocity dispersion,” Opt. Lett. 17, 172–174 (1992).
  57. J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett. 17, 583–585 (1992).
  58. G. G. Luther, J. V. Moloney, A. C. Newell, and E. M. Wright, “Self-focusing threshold in normally dispersive media,” Opt. Lett. 19, 862–864 (1994).
  59. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 385–386.
  60. This should not be confused with the fact that tightly focused pulses can create optical damage, as shown in Refs. 910111213. In our case the beam enters the medium at the beam waist; therefore without the Kerr effect the beam does not focus at all.
  61. J. K. Ranka and A. L. Gaeta, “Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses,” Opt. Lett. 23, 534–536 (1998).
  62. A. L. Gaeta, “Catatrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (1998).
  63. S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).
  64. A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998).
  65. A. A. Zozulya, S. A. Diddams, A. G. Van Engen, and T. S. Clement, “Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation,” Phys. Rev. Lett. 82, 1430–1433 (1999).
  66. M. Wittmann and A. Penzkofer, “Spectral superbroadening of femtosecond laser pulses,” Opt. Commun. 126, 308–317 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited