OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 1–6

Soliton dynamics in nonuniform fiber Bragg gratings

E. N. Tsoy and C. M. de Sterke  »View Author Affiliations


JOSA B, Vol. 18, Issue 1, pp. 1-6 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000001


View Full Text Article

Enhanced HTML    Acrobat PDF (175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamics of optical pulses in nonuniform fiber gratings is studied analytically and numerically. Our approach is based on the inhomogeneous nonlinear Schrödinger equation, derived from the nonlinear coupled-mode equations. The problem is analyzed in the context of an adiabatic soliton compressor. The dependences of the soliton amplitude and width on the propagation distance are found. We also show the presence of the phase modulation during propagation. The possibility of optimizing the fiber-grating compressor by choice of a proper length to minimize the phase modulation is suggested. Comparison of analytical results with numerical simulations shows qualitatively good agreement.

© 2001 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.5520) Ultrafast optics : Pulse compression
(350.2770) Other areas of optics : Gratings

Citation
E. N. Tsoy and C. M. de Sterke, "Soliton dynamics in nonuniform fiber Bragg gratings," J. Opt. Soc. Am. B 18, 1-6 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-1-1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991). [CrossRef]
  2. G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B 15, 2979–2985 (1998). [CrossRef]
  3. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  4. D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330 (1998). [CrossRef]
  5. P. Millar, R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in AlGaAs Bragg grating filter,” Opt. Lett. 24, 685–687 (1999). [CrossRef]
  6. See, e.g., J. Lauzon, S. Thibault, J. Martin, and F. Quellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19, 2027–2029 (1994); P. C. Hill and B. J. Eggleton, “Strain gradient chirp of fibre Bragg gratings,” Electron. Lett. 30, 1172–1174 (1994); J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. ELLEAK 33, 235–236 (1997). [CrossRef] [PubMed]
  7. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989). [CrossRef] [PubMed]
  8. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989). [CrossRef]
  9. J. E. Sipe and H. G. Winful, “Nonlinear Schrödinger solitons in a periodic structure,” Opt. Lett. 13, 132–133 (1988); C. M. de Sterke and J. E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic structures,” Phys. Rev. A 38, 5149–5165 (1988). [CrossRef] [PubMed]
  10. B. J. Eggleton, G. Lenz, and N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear Bragg gratings,” Fiber Integr. Opt. (to be published).
  11. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III, pp. 203–260.
  12. C. M. de Sterke, “Wave propagation through nonuniform gratings with slowly varying parameters,” J. Lightwave Technol. 17, 2405–2413 (1999). [CrossRef]
  13. E. N. Tsoy and C. M. de Sterke, “Propagation of nonlinear pulses in chirped fiber gratings,” Phys. Rev. E 62, 2882–2890 (2000). [CrossRef]
  14. C. M. de Sterke and B. J. Eggleton, “Bragg solitons and the nonlinear Schrödinger equation,” Phys. Rev. E 59, 1267–1269 (1999). [CrossRef]
  15. A. I. Maimistov, “Evolution of solitary waves which are approximately solitons of a nonlinear Schrödinger equation,” Zh. Eksp. Teor. Fiz. 104, 3620–3629 (1993)[Sov. Phys. JETP 77, 727–731 (1993)].
  16. D. Anderson, “High transmission rate communication systems using lossy optical fibers,” Opt. Commun. 48, 107–113 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited