OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 36–44

Energy balance in linear and nonlinear waves

Nadeem Ansari and Colin Pask  »View Author Affiliations


JOSA B, Vol. 18, Issue 1, pp. 36-44 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000036


View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We give a quantitative meaning to the often-used expression: in spatial solitons, diffraction is balanced by nonlinear refractive-index effects. After pointing out how the electric field shape and its derivatives relate to the magnetic field, we show that the balance of magnetic and electric stored energies describes what happens in a variety of linear and nonlinear waves, including linear guided waves, nonlinear self-guided waves in quadratic and cubic media, and in cases where several frequencies are present and energy exchange may occur. We give exact, electromagnetic theory results and also explain how the energy balance works in the slowly varying approximation.

© 2001 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5940) Nonlinear optics : Self-action effects
(260.2110) Physical optics : Electromagnetic optics

Citation
Nadeem Ansari and Colin Pask, "Energy balance in linear and nonlinear waves," J. Opt. Soc. Am. B 18, 36-44 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-1-36


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Segev, “Optical spatial solitons,” Opt. Quantum Electron. 30, 503–533 (1998); Yu. S. Kivshar, “Bright and dark spatial solitons in non-Kerr media,” Opt. Quantum Electron. 30, 571–614 (1998). [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).
  3. R. W. P. King and S. Prasad, Fundamental Electromagnetic Theory and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1986).
  4. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  5. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).
  6. R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992).
  7. D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1972).
  8. H. Kogelnik, “Theory of dielectric waveguides,” in Topics in Applied Physics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979), Chap. 2.
  9. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  10. N. N. Akhmediev and A. Ankiewicz, Solitons. Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).
  11. A. D. Boardman, P. Egan, F. Lederer, U. Langbein, and D. Mihalache, “Third-order nonlinear electromagnetic TE andTM guided waves,” in Nonlinear Surface Electromagnetic Phenomena, H. E. Ponath and G. I. Stegeman, eds. (North-Holland, Amsterdam, 1991).
  12. W. J. Tomlinson, “Surface wave at a nonlinear interface,” Opt. Lett. 5, 323–325 (1980). [CrossRef] [PubMed]
  13. R. De La Fuente and A. Barthelemy, “Spatial solitons pairing by cross-phase modulation,” Opt. Commun. 88, 419–423 (1992). [CrossRef]
  14. Y. N. Karamzin and A. P. Sukhorukov, “Mutual focusing of high-power light beams in media with quadratic nonlinearity,” Sov. Phys. JETP 41, 414–420 (1976).
  15. Y. U. Kivshar, “Bright and dark spatial solitons,” Opt. Quantum Electron. 30, 571–614 (1998), and references therein. [CrossRef]
  16. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  17. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1964).
  18. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, Cambridge, England, 1990); see especially Section 5.1.1.
  19. N. Akmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Does the nonlinear Schrödinger equation correctly describe beam propagation?” Opt. Lett. 18, 411–413 (1993). [CrossRef]
  20. A. P. Sheppard and M. Haelterman, “Nonparaxiality stabilizes three-dimensional soliton beams in Kerr media,” Opt. Lett. 23, 1820–1822 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited