OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 85–92

Optical properties of discontinuous gold films: finite-size effects

Dan Dalacu and Ludvik Martinu  »View Author Affiliations

JOSA B, Vol. 18, Issue 1, pp. 85-92 (2001)

View Full Text Article

Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical constants of discontinuous gold films consisting of both embedded and unembedded spherical particles in the size range 5–14 nm were determined from spectroellipsometric and spectrophotometric measurements. The optical response was modeled with the Yamaguchi anisotropic dielectric function. The energy and width dependence of the surface-plasmon resonance owing to the finite size of the gold particles was determined with a phenomenologically modified metal dielectric function. The expected blueshift and broadening of the resonance with decreasing particle size was observed. The magnitude of the shift suggests that lattice contraction, including its effect on both the free-electron response and the core response, plays an important role in determining the resonant energy. The width dependence on particle size was found to be well described by broadening parameters A=0.15 and A=0.22 for embedded and unembedded particles, respectively.

© 2001 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.3910) Physical optics : Metal optics

Dan Dalacu and Ludvik Martinu, "Optical properties of discontinuous gold films: finite-size effects," J. Opt. Soc. Am. B 18, 85-92 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. U. Kreibig and P. Zacharias, “Surface plasma resonances in small spherical silver and gold particles,” Z. Phys. 231, 128–143 (1970).
  2. M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).
  3. J. C. C. Fan, “Selective-black absorbers using sputtered cermet films,” Thin Solid Films 54, 139–148 (1978).
  4. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985).
  5. M. Valden, X. Lai, and D. W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science 281, 1647–1650 (1998).
  6. D. Jarret and L. Ward, “Optical properties of discontinuous gold films,” J. Phys. D 9, 1515–1527 (1976).
  7. V. Truong and G. Scott, “Optical constants of aggregated gold films,” J. Opt. Soc. Am. 66, 124–131 (1976).
  8. C. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
  9. S. Norman, T. Andersson, and C. Granqvist, “Optical properties of discontinuous gold films,” Phys. Rev. B 18, 674–695 (1978).
  10. D. Bedeaux and J. Vlieger, “A statistical theory for the dielectric properties of thin island films: application and comparison with experimental results,” Thin Solid Films 102, 265–281 (1983).
  11. T. Yamaguchi, M. Takiguchi, S. Fujioka, and H. Takahashi, “Optical absorption of submonolayer gold films: size dependence of εbound in small island particles,” Surf. Sci. 138, 449–463 (1984).
  12. R. J. Warmack and S. L. Humphrey, “Observation of two surface-plasmon modes on gold particles,” Phys. Rev. B 34, 2246–2252 (1986).
  13. G. A. Niklasson, “Optical properties of gas-evaporated metal particles: effects of a fractal structure,” J. Appl. Phys. 62, 258–265 (1987).
  14. M. Bloemer, M. Buncick, R. Warmack, and T. Ferrel, “Surface electromagnetic modes in prolate spheroids of gold, aluminum, and copper,” J. Opt. Soc. Am. B 5, 2552–2559 (1988).
  15. G. Bader, P. Ashrit, F. Girouard, and V. Truong, “p-polarized optical properties of aggregrated Au films,” J. Appl. Phys. 68, 1820–1824 (1990).
  16. R. Doremus, “Optical absorption of island films of noble metals: wavelength of the plasma absorption band,” Thin Solid Films 326, 205–210 (1998).
  17. K. Mümmler and P. Wimann, “Spectroscopic ellipsometry on gold clusters embedded in a Si(111) surface,” Thin Solid Films 313–314, 522–526 (1998).
  18. C. G. Granqvist, N. Calander, and O. Hunderi, “Optical properties of ultrafine silver particles,” Solid State Commun. 31, 249–252 (1979).
  19. J. Little, T. Callcott, T. Ferrel, and E. Arakawa, “Surface-plasmon radiation from ellipsoidal silver spheroids,” Phys. Rev. B 29, 1606–1615 (1984).
  20. T. Yamaguchi, M. Ogawa, H. Takahashi, and N. Saito, “Optical absorption of submonolayer silver films: size dependence of εbound in small island particles,” Surf. Sci. 129, 232–246 (1983).
  21. Y. Borensztein, P. D. Andrès, R. Monreal, T. Lopez-Rios, and F. Flores, “Blue-shift of the dipolar plasma resonance in small silver particles on an alumina surface,” Phys. Rev. B 33, 2828–2830 (1986).
  22. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  23. S. Berthier and J. Lafait, in Handbook of Optical Properties: Thin Films for Optical Coatings, R. E. Hummer and K. H. Guenther, eds. (CRC Press, Boca Raton, Fla., 1995), Vol. 1, Chap. 11, pp. 305–352.
  24. A. Kawabata and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).
  25. W. A. de Heer, “The physics of simple metal clusters: experimental and simple models,” Rev. Mod. Phys. 65, 611–676 (1993).
  26. C. Yannouleas and R. A. Broglia, “Landau damping and wall dissipation in large metal clusters,” Ann. Phys. (N.Y.) 217, 105–141 (1992).
  27. U. Kreibig and C. von Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys. 224, 307–323 (1969).
  28. W. Ekardt, “Size-dependent photoabsorption and photoemission of small metal particles,” Phys. Rev. B 31, 6360–6370 (1985).
  29. V. V. Kresin, “Collective resonances in silver clusters: role of d electrons and the polarization-free surface layer,” Phys. Rev. B 51, 1844–1849 (1995).
  30. A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
  31. T. Reiners, C. Ellert, M. Schmidt, and H. Haberland, “Size dependence of the optical response of spherical sodium clusters,” Phys. Rev. Lett. 74, 1558–1561 (1995).
  32. D. Dalacu and L. Martinu, “Spectroellipsometric characterization of plasma deposited Au/SiO2 nanocomposite films,” J. Appl. Phys. 87, 228–235 (2000).
  33. B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. Vialle, and M. Broyer, “Optical properties of gold clusters in the size range 2–4 nm,” Phys. Rev. B 57, 1963–1970 (1998).
  34. J. Tiggesbäumker, L. Köller, K.-H. Meiwes-Broer, and A. Liebsch, “Blue shift of the Mie plasma frequency in Ag clusters and particles,” Phys. Rev. A 48, R1749–R1752 (1993).
  35. K. P. Charlé, W. Schulze, and B. Winter, “The size dependent shift of the surface plasmon absorption band of small spherical metal particles,” Z. Phys. D 12, 471–475 (1989).
  36. R. Lässer and N. V. Smith, “Interband optical transitions in gold in the photon energy range 2–25 eV,” Solid State Commun. 37, 507–509 (1981).
  37. U. Kreibig, “Anomalous frequency and temperature dependence of the optical absorption of small gold particles,” J. Phys. (Paris) Colloq. 27, 97–103 (1977).
  38. N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4, 3321–3344 (1971).
  39. P. Winsemius, H. P. Lengkeek, and F. F. V. Kampen, “Structure dependence of the optical properties of Cu, Ag and Au,” Physica B 79, 529–546 (1975).
  40. C. W. Mays, J. S. Vermaak, and D. Kuhlmann-Wilsdorf, “On surface stress and surface tension,” Surf. Sci. 12, 134–140 (1968).
  41. C. Solliard and M. Flueli, “Surface stress and size effects on the lattice parameter in small particles of gold and platinum,” Surf. Sci. 156, 487–494 (1985).
  42. A. Balerna, E. Bernieri, P. Picozzi, A. Reale, and S. Santucci, “A structural investigation on small gold clusters by EXAFS,” Surf. Sci. 156, 206–213 (1985).
  43. R. Lamber, S. Wetjen, and G. Schulz-Ekloff, “Metal clusters in plasma polymer matrices: gold clusters,” J. Phys. C 99, 13834–13838 (1995).
  44. K. Liang, W. Salaneck, and I. Aksay, “X-ray photoemission studies of thin gold films,” Solid State Commun. 19, 329–334 (1976).
  45. H. Roulet, G. D. J. M. Mariot, and C. F. Hague, “Size dependence of the valence bands in gold clusters,” J. Phys. F 10, 1025–1030 (1980).
  46. G. K. Wertheim, “The insulator–metal transition in supported clusters,” Phase Transit. 24–26, 203–214 (1990).
  47. L. Serra and A. Rubio, “Optical response of Ag clusters,” Z. Phys. D 40, 262–264 (1997).
  48. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Anomalous optical absorption of aggregated silver films,” Thin Solid Films 18, 63–70 (1973).
  49. J. E. Klemberg-Sapieha, O. M. Kuttel, L. Martinu, and M. R. Wertheimer, “Dual microwave–RF plasma deposition of functional coatings,” Thin Solid Films 93–94, 965–972 (1990).
  50. L. Martinu, J. E. Klemberg-Sapieha, O. M. Kuttel, A. Raveh, and M. R. Wertheimer, “Critical ion energy and ion flux in the growth of films by plasma-enhanced chemical-vapor deposition,” J. Vac. Sci. Technol. A 12, 1360–1364 (1994).
  51. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer-Verlag, New York, 1995).
  52. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
  53. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
  54. T. Yamaguchi, H. Hidetoshi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am. 68, 1039–1044 (1978).
  55. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  56. A. Heilmann and J. Werner, “In situ observation of microstructural changes of embedded silver particles,” Thin Solid Films 317, 21–26 (1998).
  57. M. Miki-Yoshida, S. Techuacanero, and M. José-Yacamán, “On the high temperature coalescence of metallic nanocrystals,” Surf. Sci. Lett. 274, L569–L576 (1992).
  58. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart & Winston, New York, 1976).
  59. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  60. WVASE32, Users Manual (J. A. Woollam Co., Lincoln, Nebraska, 1996).
  61. J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. Vialle, A. Perez, and M. Broyer, “Optical properties of gold metal clusters: a time-dependent local-density-approximation investigation,” Eur. Phys. J. D 4, 95–108 (1998).
  62. A. Rubio and L. Serra, “Dielectric screening effects on the photoabsorption cross section of embedded metallic clusters,” Phys. Rev. B 48, 18222–18229 (1993).
  63. J. Tiggesbäumker, L. Köller, H. O. Lutz, and K.-H. Meiwes-Broer, “Giant resonances in silver-cluster photofragmentation,” Chem. Phys. Lett. 190, 42–47 (1992).
  64. J. L. Martins, R. Car, and J. Buffet, “Variational spherical model of small metallic particles,” Surf. Sci. 106, 265–271 (1981).
  65. U. Kreibig, “About a structural phase transition in minute gold particles embedded in glass,” in Growth and Properties of Metal Clusters, J. Bourdon, ed. (Elsevier, Amsterdam, 1980), pp. 371–378.
  66. M. Quinten, “Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV,” Z. Phys. B 100, 211–217 (1996).
  67. P. Apell and A. Ljungbert, “A general nonlocal theory for the electromagnetic response of a small metal particle,” Phys. Scr. 26, 113–118 (1982).
  68. P. Apell and D. R. Penn, “Optical properties of small metal spheres: surface effects,” Phys. Rev. Lett. 50, 1316–1319 (1983).
  69. E. Zaremba and B. N. J. Persson, “Dynamic polarizability of small metal particles,” Phys. Rev. B 35, 596–606 (1987).
  70. B. N. J. Persson, “Polarizability of small spherical metal particles: influence of the matrix environment,” Surf. Sci. 281, 153–162 (1993).
  71. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric function and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
  72. P. J. Feibelman, “Surface electromagnetic fields,” Prog. Surf. Sci. 12, 287–408 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited