OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 93–100

Transient stimulated Brillouin scattering in a fiber ring resonator and its effect on optical Kerr bistability

Hongpu Li and Kazuhiko Ogusu  »View Author Affiliations

JOSA B, Vol. 18, Issue 1, pp. 93-100 (2001)

View Full Text Article

Acrobat PDF (244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the transient interaction between optical Kerr bistability and stimulated Brillouin scattering (SBS) when an intense optical pulse is incident in a short fiber ring resonator. An initial phase detuning of the ring resonator and the difference in the phase shift between the pump wave and the created Stokes wave are taken into account in the three-wave SBS model. The ratio of the Brillouin gain coefficient to the nonlinear refractive index of the fiber, which is termed the relative Brillouin gain coefficient, is used as a key parameter for examining the conditions for obtaining optical Kerr bistability in a fiber ring resonator. The numerical results show that optical Kerr bistability cannot be obtained in a ring resonator made from a conventional fused-silica fiber because of the generation of SBS. However, if other fibers with relative Brillouin gain coefficients at least 1 order smaller than that of fused-silica fibers are used, we can suppress SBS and hence obtain optical Kerr bistability. Moreover, we investigate theoretically and experimentally the dynamics of SBS in a fused-silica fiber ring resonator irradiated by a Gaussian pulse. The relaxation and pulsation in the Stokes signal depend strongly on the initial phase detuning of the ring resonator. The experimental results obtained with a single-frequency pulsed YAG laser agree qualitatively with theoretical predictions.

© 2001 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5890) Nonlinear optics : Scattering, stimulated
(290.5900) Scattering : Scattering, stimulated Brillouin

Hongpu Li and Kazuhiko Ogusu, "Transient stimulated Brillouin scattering in a fiber ring resonator and its effect on optical Kerr bistability," J. Opt. Soc. Am. B 18, 93-100 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fl., 1985).
  2. B. Crosignani, B. Daino, P. Di Porto, and S. Wabnitz, “Optical multistability in a fiber-optic passive-loop resonator,” Opt. Commun. 59, 309–312 (1986).
  3. F. J. Fraile-Peláez, J. Capmany, and M. A. Muriel, “Transmission bistability in a double-coupler fiber ring resonator,” Opt. Lett. 16, 907–909 (1991).
  4. K. Ogusu, H. Shigekuni, and Y. Yokota, “Dynamic transmission properties of a nonlinear fiber ring resonator,” Opt. Lett. 20, 2288–2290 (1995).
  5. T. Fukushima and T. Sakamoto, “Kerr-effect-induced S-R flip-flop operation in an optical fiber loop resonator with double couplers,” Opt. Lett. 20, 1119–1121 (1995).
  6. Y. H. Ja, “Kerr bistability in a 3×3 coupler optical fiber ring resonator,” Appl. Opt. 32, 5310–5312 (1993).
  7. Y. H. Ja, “Multiple bistability in an optical-fiber double-ring resonator utilizing the Kerr effect,” IEEE J. Quantum Electron. 30, 329–333 (1994).
  8. C.-X. Shi, “Nonlinear fiber loop mirror with optical feedback,” Opt. Commun. 107, 276–280 (1994).
  9. K. Ogusu, “Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator,” IEEE J. Quantum Electron. 32, 1537–1543 (1996).
  10. K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, “Corrections to and comments on ‘Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator, ’ ” IEEE J. Quantum Electron. 33, 2128–2129 (1997).
  11. A. L. Steele, S. Lynch, and J. E. Hoad, “Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback,” Opt. Commun. 137, 136–142 (1997).
  12. F. J. Fraile-Peláez, M. Prol, D. J. Santos, and J. M. Soto-Crespo, “Transient analysis of a nonlinear fiber ring resonator,” Appl. Phys. Lett. 63, 1477–1479 (1993).
  13. H. Li and K. Ogusu, “Analysis of optical instability in a double-coupler nonlinear fiber ring resonator,” Opt. Commun. 157, 27–32 (1998).
  14. R. M. Shelby, M. D. Levenson, and S. H. Perlmutter, “Bistability and other effects in a nonlinear fiber-optic ring resonator,” J. Opt. Soc. Am. B 5, 347–357 (1988).
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995) Chap. 9.
  16. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
  17. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
  18. N. Uesugi, M. Ikeda, and Y. Sasaki, “Maximum single frequency input power in a long optical fiber determined by stimulated Brillouin scattering,” Electron. Lett. 17, 379–380 (1981).
  19. Y. Aoki, K. Tajima, and I. Mito, “Observation of stimulated Brillouin scattering in single-mode fibers with single-frequency laser-diode pumping,” Opt. Quantum Electron. 19, 141–143 (1987).
  20. P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady-state characteristics of a Brillouin amplifier based on an all-fiber single-mode ring resonator,” Opt. Quantum Electron. 21, S113–S128 (1989).
  21. J. Botineau, C. Leycuras, C. Montes, and E. Picholle, “Stabilization of a stimulated Brillouin fiber ring laser by strong pump modulation,” J. Opt. Soc. Am. B 6, 300–312 (1989).
  22. C. Montes, D. Bahloul, I. Bongrand, J. Botineau, G. Cheval, A. Mamhoud, E. Picholle, and A. Picozzi, “Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers,” J. Opt. Soc. Am. B 16, 932–951 (1999).
  23. S. Randoux, V. Lecoeuche, B. Segard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, R4345–R4349 (1995).
  24. V. Lecoeuche, B. Segard, and J. Zemmouri, “Modes of destabilization of Brillouin fiber ring lasers,” Opt. Commun. 134, 547–558 (1997).
  25. H. Li and K. Ogusu, “Instability of stimulated Brillouin scattering in a fiber ring resonator,” Opt. Rev. 7, 303–308 (2000).
  26. K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
  27. K. Tsujikawa, K. Nakajima, and Y. Miyajima, “New SBS suppression fiber with uniform chromatic dispersion to enhance four-wave mixing,” IEEE Photon. Technol. Lett. 10, 1139–1141 (1998).
  28. M. Asobe, T. Kanamori, and K. Kubodera, “Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,” IEEE J. Quantum Electron. 29, 2325–2333 (1993).
  29. W. Lu, A. Johnstone, and R. G. Harrison, “Deterministic dynamics of stimulated scattering phenomena with external feedback,” Phys. Rev. A 46, 4114–4122 (1992).
  30. H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys., Part 1 38, 6309–6315 (1999).
  31. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
  32. R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier,” IEEE J. Quantum Electron. 21, 1558–1562 (1985).
  33. E. Lichtman and A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited